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ABSTRACT

Methods for maintaining separation between aircraft in the current airspace

system have been built from a foundation of structured routes and evolved procedures.

However, as the airspace becomes more congested and the chance of failures or

operational error become more problematic, automated conflict alerting systems have

been proposed to help provide decision support and to serve as traffic monitoring aids.

The problem of conflict detection and resolution has been tackled from a number

of different ways, but in this thesis, it is recast as a problem of prediction in the presence
of uncertainties. Much of the focus is concentrated on the errors and uncertainties from

the working trajectory model used to estimate future aircraft positions. The more

accurate the prediction, the more likely an ideal (no false alarms, no missed detections)

alerting system can be designed.

Additional insights into the problem were brought forth by a review of current

operational and developmental approaches found in the literature. An iterative, trial and

error approach to threshold design was identified. When examined from a probabilistic

perspective, the threshold parameters were found to be a surrogate to probabilistic

performance measures. To overcome the limitations in the current iterative design

method, a new direct approach is presented where the performance measures are directly

computed and used to perform the alerting decisions. .

The methodology is shown to handle complex encounter situations (3-D, multi-

aircraft, multi-intent, with uncertainties) with relative ease. Utilizing a Monte Carlo

approach, a method was devised to perform the probabilistic computations in near real-

time. Not only does this greatly increase the method's potential as an analytical tool, but

it also opens up the possibility for use as a real-time conflict alerting probe. A prototype

alerting logic was developed and has been utilized in several NASA Ames Research

Center experimental studies.

This document is based on the thesis of Lee C. Yang submitted to the Department of

Aeronautics and Astronautics at the Massachusetts Institute of Technology in partial

fulfillment of the requirements for the Degree of Doctor of Philosophy.
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Chapter 1

Introduction

As the sky above becomes more congested, new concepts of Air Traffic

Management (ATM) are being proposed to handle the expected growth [RTCA, 1995;

Wangermann, 1994; Phillips, 1996, Brudnicki and McFarland, 1997]. To enable more

efficient ways and procedures of moving traffic about in the airspace, many methods will

require the relaxation of the rigid airway structure and in-trail spacing currently being

used to maintain traffic separation. The new concept is based on the idea of reducing

restrictions on individual flight paths. Consequently, to handle the increased traffic

volume or possible loss of airway structure, automated traffic conflict detection and

resolution tools would be required to aid pilots and/or ground controllers in ensuring safe

separation at all times.

To predict traffic conflicts, it is necessary to project the future positions of aircraft

over time. However, uncertainty is inherent in the prediction of any future event and the

same is true in conflict prediction. Due to random processes, there is variability and

uncertainty in the aircraft trajectory that make it difficult to precisely determine the

aircraft's location at future times. It is this deficiency that produces errors in the

determination of conflict and causes problems in the design of an effective alerting

system.

The use of a probabilistic approach can be helpful when uncertainty is expected or

prevalent. It allows assessment of the likelihood of specific outcomes and provides the

end-user with additional information that could be beneficial in the decision-making
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process.Probabilitymethodscanalsobeplacedin therole of assessingtheoverall

hazardlevelof theencountersituationandthedifficulty of resolvingtheconflict athand.

By utilizing theseproperties,theeffectsof variousuncertaintyelementsin theaircraft

trajectoryon alertingsystemperformancemaybeanalyzed.Of specialinterestis the

importanceof includingadditionalintent informationinto thealertingscheme.

Whenaircraftintent is addedinto theaircraft trajectoryprediction,it can

significantly reducetheuncertaintyin theestimatedfuturepathandhencelowererrorsin

conflict determination.Theeffectscanbeanalyzedusingprobabilitymetricssuchasthe

falsealarmrateor successfulalertprobability to examinethebenefitsof theaddedintent

informationin specificsituations.However,oneshouldbecautionedthat erroneous

intentassumptionscouldalsoleadto misseddetectionsof conflictsandinaccurate

estimatesof hazard.Mistakessuchastheseoccurfrom incorrectmodelingof theaircraft

trajectoriesandcanactuallyleadto additionalsourcesof estimationerrors.

1.1 Objectives

Thereareseveralmajorobjectivescontainedwithin this thesis. Oneis to explain

how uncertaintiesin trajectoryestimationsignificantlyimpactandhinderconflict alerting

systems.A unifying conceptis proposedto explainvariousmethodsof improving

predictionandalertingperformancein thepresenceof aircraft trajectoryuncertainties.

Theframeworktiestogethersuchapproachesasimprovedsensoraccuracy,addedintent

information,pathconformancechecking,reducedfalsealerts,andalsoprobabilistic

trajectoryestimationinto asingleunderlyingbasisfor improvingconflict predictionand

alerting. In addition,afoundationis laid to explainhow probabilityconceptsarealready

embodiedwithin thegeneralframeworkof alertingsystemdesign.
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Finally, thiswork presentsamethodusedto model,analyze,andcomputethe

likelihood of conflicts in thepresenceof uncertainties.Theapproachusesprobability

densityfunctionsto modelpotentialtrajectoriesandutilizesMonteCarlosimulationsto

calculatethe likelihood of violatingseparationminimums. A techniquewasdeveloped

andrefinedto perform thecalculationsin amannerefficientenoughto beusedasa

possiblereal-timeconflict detectionandresolutionprobe.

1.2 Overview of Thesis

To begin, Chapter 2 introduces the relevant terms and definitions used to describe

alerting system performance. The notion of uncertainty in the state trajectory estimation

and its effects on prediction and alerting is given here in the context of state-space

terminology. Also, the tradeoff between false alarms and missed detections is presented

using System Operating Characteristic curves.

In Chapter 3, the problem of conflict detection and resolution is formally

introduced. A brief overview of current operational and developmental conflict alerting

approaches are discussed. Initial motivation will be provided for the use of the

probabilistic approach as compared to other previous modeling efforts, though the

foundation will be further substantiated in subsequent chapters.

Chapter 4 gives a general guideline for improving alerting performance in the

presence of uncertainties. It ties together various approaches from two main goals of

increasing prediction accuracy and reducing inherent uncertainty. The importance and

concept of uncertainties and trajectory modeling errors are also explained in terms of

their degrading effects on the alerting system performance.
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A probabilisticconnectionisdevelopedin Chapter5 from looking atthetypical

alertingsystemdesignapproachfrom adifferentperspective.Theparadigmprovides

furthermotivationfor utilizing probabilistictrajectorymodelsfor conflict alertingand

prediction.

Chapter6 discussesthemethodologyandtoolsusedin this thesisfor the

calculationsof theconflict probabilities(MonteCarlosimulations).Thebasictrajectory

model is developedandaccuracyin its modelingis discussed.

In Chapter7, severalexampleconflict encountersarestudiedutilizing the

methodologydevelopedin this thesis.Thepotentialof themethodto handlevery

complicatedsituationsis shownby theseexamples.

Chapter8describesaneffort of transformingprobabilisticconflict analysisinto a

real-timealertingsystem.Issuesrelatedto theuseof probabilityandtheimplementation

of real-timeconflict probingarediscussed.Experienceandlessonslearnedarebrought

forth.

Chapter9 providesafinal summaryandmajorcontributionsintroducedin this

thesis.
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Chapter 2

Review of Alerting System Performance

At its root, conflict detection and resolution is a process of determining the

existence of a possible hazard and alerting the air traffic controller and/or flight crew.

Accordingly, it is worthwhile to begin by examining the operation of the alerting system

in general.

2.1 Generic Alerting System

A hazard alerting system is one of several safety components typically found in

complex human-operated systems [Kuchar, 1995]. Its purpose is to monitor potential

threats and issue warnings to human operators when undesirable events are predicted to

occur. A simplified diagram of a generic alerting system within the context of the entire

operating environment is shown below in Figure 2-1.

Information about the situation is measured by sensors and presented to the

human operator via various types of displays. The same information or a subset of it can

also be fed to an alerting system to help determine the possibility of a hazardous

situation. In many cases, a hazard can be detected by the operator from the displays

themselves; however, in other instances, the operator may not be fully aware of the

situation or may need additional confirmation to aid in decision making. An alert is

supposedly a prediction that an unsafe state may occur, but reliance is usually still on the

human operator to make the final decision. The degree of automation can vary, with

some alerting systems providing a simple warning, while others give additional resolution
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advisories.It is alsopossibleto haveanalertfully automatedto initiate a resolution,and

theoperatoris only informedof theaction.

Situation

Environment

Controlled

System

Informational

Displays

Alerting

System

J_

Operating

Procedures

Human

Operator

Figure 2-1: Generic Alerting System in Operation with Human Operator

[Kuchar, 1995]

2.2 State-Space Representation of Alerting Systems

The use of state-space representation is a way of introducing the concepts and

issues associated with alerting system design. The method was developed by Kuchar

[1995, 1996] and is based on multivariable control system theory. The following is a

brief review from that previous work.

In the approach, the variables X1(t), x2(t) ..... x,(t) describe the states of the

encounter situation at time t. These states can be thought of as the set of parameters

utilized by the alerting system logic to characterize the dynamics of the threat condition.

The state vector, x(t), is then defined as:
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x(t) = [xt(t) xz(t).., x,(t)] T (2.1)

where n is the number of elements chosen to describe the situation. At any given time,

t, the current state of the system, as known to the alerting logic, is at some particular

point identified by x(t) in the n-dimensional state-space X.

2.2.1 State Trajectory

The states of the system will typically change over time during the course of

operation. These changes in the state vector occur in accordance with the system

dynamics, the environment, and the inputs from the human controller. The set of values

of x(t) over a given time interval is the state trajectory. Figure 2-2 shows an example of

a state trajectory as viewed in a State-Space Diagram.

X2

State-Space

x
J

State Trajectory

x(t) = [x,(t) xz(t)] v

Xl

2.2.2 Hazard Space

Figure 2-2: Example State-Space Diagram

In certain regions of the state-space X, there are domains where undesirable

events can occur. These regions are termed hazard space (as denoted by H). Whenever

x(t) is allowed to enter a region of hazard space, a missed detection has occurred and the

17



alertingsystemhasfailed to provide thenecessaryprotectionto preventanunwanted

event. An exampleof hazardspaceasdepictedin.a State-SpaceDiagram is shownin

Figure2-3.

x2lState,Space

ard Space

Xl

Figure 2-3: Example Hazard Space in State-Space Diagram

2.2.3 Alert Space

The alert space is defined as the set of all state-vectors, x(t), in which the alerting

system will warn the operator in order to prevent a possible intrusion into hazard space.

By definition, no alerts are generated when x(t) is outside the alert space. The

boundaries of alert space are considered the alerting thresholds and basically define when

alerts are given and when they are not. In a given state-space, X, the regions of alert

space will be denoted as X A.

In Figure 2-4, an example alert space is shown in a State-Space Diagram. When

the state trajectory first enters alert space (point 1), an alert will be given. At this point,

the alerting logic has decided that an intrusion into hazard space is likely if nothing is

done to warn the human operator (solid line). In other words, the alerting thresholds have

been surpassed. By initiating the alert, it is expected that some action will be performed

(depicted at point 2) to alter the course of the state trajectory (dashed line) in order to

prevent a hazard from taking place. There is usually some delay from point I to point 2
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asthehumanoperatordecideson theappropriateresponseto take. Becauseanalertis a

precursorwarningto avoidahazard,thealertspaceshouldencompassall regionsof

hazardspace.

X2

State-Space

x

Trajectory

s_' After Alert

X(:) l f'/"_.'" L l_ Initial Projected

-A/_ler_pace _ Iv Trajectory

Xl

Figure 2-4: Example Alert Space in State-Space Diagram

2.3 Alerting Decision Outcomes

Ideally, an alert correctly notifies when a hazard will occur if nothing is done to

alter the current situation of the system. To be more complete, the alert should also allow

for absolute resolution of the threat if it is to be considered a safety feature. If both these

elements are satisfied, then the alert is termed a correct detection (CD). If, however, the

hazard is not prevented (whether or not an alert is given), the outcome would be

considered a missed detection (MD) because the system has failed to provide the intended

safe avoidance of the hazard. An alert that is given but was not necessary (because a

hazard would not have occurred in the first place) is usually termed a false alarm (FA).

For sake of completeness, normal operation with no threat and correctly indicated by the

alerting system will be considered a correct rejection (CR). The complete decision

outcome is diagrammed in Figure 2-5.
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Hazard

in Path?

YES

Issued?

YES

Avoided?

YES

Correct

Detection

NO

NO

NO

NO

Figure 2-5: Alerting Decision Outcomes

The corresponding outcomes can be graphically depicted using State-Space

Diagrams as shown in Figure 2-6. The points 1 and 2 refer to when the alert is given and

when the response action is initiated, respectively. The solid lines are used to indicate the

state trajectory which would have occurred had the alert not been given, and the dotted

lines refer to the new state trajectory from the response to an alert. Figure 2-6a (correct

detection) has been discussed already, and along with Figure 2-6d (correct rejection),

represent the two cases of an ideally operating alerting system.
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X2
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S
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 lert Sp- ceV r
X A

a) Correct Detection

v

X1

X2 X2

Alert Space_
X A

Xl

b) Missed Detection (No Alert/Late Alert)

,,¢'
S

_Aler_?p-ac_

r

Xl

X2

S
S

S

x(t) 1 2 ,, s

X2

w

Xl

x(t) 1 2

c) False Alarm (Nuisance Alert/Induced Hazard)

w

X!

X2

x(t)

A/lert Space_

X A

d) Correct Rejection

Xl

Figure 2-6: State-Space Diagrams of Alerting Outcomes
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Troubleoccurswheneitheramisseddetectionor afalsealarmis experienced.In

thecaseof amisseddetection,analertis needed(statetrajectorywill enterhazardspace)

but thealertingsystemfails in preventingthehazardfrom occurring. Sometimes,a

misseddetectionis furthersub-dividedinto two categoriesasshownin Figure2-6b:

misseddetectiondueto no alertandmisseddetectiondueto latealert [Winder and

Kuchar, 1999;Haissig,et al. 1999].The formeris mostlikely dueto lack of information

of thestatesof thesystem(both x(t) or H) or from designerrorsin the alerting

algorithm. In the latealert case,eithertheoperatorisnot givenenoughtime to decide

andperformtheappropriateaction,or for somereason,thewarningis not heededor is

just ignored.

Falsealarms,asdepictedin Figure2-6c,occurwheneveranalertis givenbut the

statetrajectorywould nothaveenteredinto hazardspacewithout it. A falsealarmcan

alsobe parseddownfurther into two sub-categories:falsealarmresultingin nohazard

(nuisancealert) andfalsealarmcausinginducedhazard_rumm, 1996;Winder and

Kuchar,1999;Haissig,et al. 1999].Both casesdecreaseefficiencyandincrease

workloadfor thehumanoperatorsinvolved. At first glance,it might seemthat theformer

wouldbeof little concernto safety. However,the increasedoccurrenceof suchnuisance

alertscandirectly impacttheresponseof thehumanoperatorin actualemergency

situations.This is especiallyimportantwhenquick anddecisiveactionis calledfor in

orderto preventacatastrophiclossof thesystem(e.g.collisionbetweentwo aircraft).

2.4 Tradeoff Between Missed Detections and False Alarms

When a state trajectory first enters the alert space (assuming x(t) is coincidental

with point 1 in Figure 2-4), an alert is initiated. As stated earlier, the boundaries of this

alert space define the alerting threshold of the alerting logic. Since x(t) is only an
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estimateof thecurrentstateof thethreatcondition,anelementof predictionis inherently

involvedin determiningthepaththat x(t) will follow. Thedecisionto alert is basedon

thelogic'spredictionthat anintrusionintohazardspaceis likely giventhis x(t). If the

predictionis wrong,thenafalsealarm(FA) hasoccurred.If thepredictioniscorrect,

theneitherthealertpreventsthehazardfrom occurring(CD) or thealert is too latein

avoidingahazardspaceincursion(MD). Thustheeventof analertresultsin oneof 3

mutuallyexclusiveoutcomes:CD, MD, or FA. Thelikelihood of anyof theseevents

occurring(givenanalert)canbeexpressedin statisticalpropertiessuchastheprobability

of correctdetection,P(CD), missed detection, P(MD), and false alarm, P(FA).

If the alert space is made relatively large, alerts will occur more often during the

operation of the system. This is the conservative approach. It can reduce the number of

missed detections but at the expense of an increased rate of false alarms. If the alert

space is made relatively small, less alerts will occur (fewer false alarms), but at the

expense of increased missed detections from late alerts. Thus, here lies the fundamental

tradeoff between MD and FA in alerting system design: reducing P(MD) will increase

P(FA) while reducing P(FA) will increase P(MD). The result is similar to the problem

found in signal detection theory as demonstrated by Kuchar [1995, 1996] in his work on

System Operating Characteristic (SOC) curves. An overview of the SOC technique is

presented in a later section.

The reason a larger alert space will generally increase P(FA) lies in the mere fact

that more states are included in the alert space. This allows for a higher probability that

an alert will be induced whether or not it is needed. There is much more room for error

in the prediction that hazard space will be reached if nothing is done. Take, for example,

Figure 2-7a where the alert space is relatively large compared to the hazard space.

Depending upon the dynamics of the system, there can be a higher probability that the
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statetrajectorywill notenterinto theregionof hazardspaceascomparedto thecasein

Figure2-7b wherethealert spaceissmaller. Thus,thelargeralertspacewill usually

resultin ahigherrateof falsealarms.

X2

Alert Space

X A

a) Larger Alert Space (More Alerts/Higher Rate of FA/Lower Rate of MD)

X2

Xl

b) Smaller Alert Space (Fewer Alerts/Lower Rate of FA/Higher Rate of MD)

Figure 2-7: Effect of Alert Space Size on False Alarms

However, the smaller alert space may end up sacrificing the ability to escape from the

hazard (i.e. provide insufficient warning time) and thus lead to a higher rate of missed

detections. This tradeoff is the fundamental design challenge which alerting system

designers are often faced with.
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2.5 Role of Uncertainty in the Alerting Outcome

Due to the nature of prediction, the estimate of future events is inherently

uncertain to some extent. As alluded to in the previous section, the path of the state

trajectory is usually not known exactly. This leads to a statistical description of the

alerting outcomes (e.g. P(CD), P(MD), and P(FA)). Much of this can be attributed to

uncertainties with predicting the state trajectory from only the current state, x(t).

Take, for example, Figure 2-8 where three different aircraft encounter scenarios

are shown. In each case, the range (r) is 100 nautical miles and the range rate (/') is 566

knots. If the alerting decision is to be based on only these two parameters, then the

current state vector x(t) = [r /.IT would be identical for each of these three cases - the

alerting algorithm would be unable to tell them apart. However, the outcome from each

scenario is decidedly different. In the case of Figure 2-8a, a direct collision would occur,

while in the other 2 cases, no real threat is encountered.

The comparison between Figure 2-8a and Figure 2-8b is especially important to

note because it shows just how much the predictive path of the vehicle states can come

into play even with the same apparent initial conditions. Though the current position and

velocity of each aircraft is the same in these cases, the latter would result in a false alarm

if an alert were to occur at the present time.
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Figure 2-8: Example Encounters with the Same State Vector,

x<t) : [r i.]7 : [100nmi 566kts] T

In the case of Figure 2-8c, the situation appears quite different to the previous two

scenarios, but would actually be transparent to an alerting algorithm based on only

• , ¢

relative range and range rate at the current time. Unless some other provision is included

to differentiate the scenes (e•g. relative bearing), the alerting algorithm would likely treat

all three scenario encounters the same at this particular instant in time. The consequence

of this is a higher degree of uncertainty in the alerting decision outcome. This effect can

be seen in the state-space representation shown in Figure 2-9 where the state trajectory of

the three cases from the previous figure are plotted, In the figure, a hazard is assumed to
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bea lossof separationof somepredefineddistance,suchas5nauticalmilesor less,

betweenaircraft.

600

[knots]
4O0
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I
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Figure 2-9: State-Space Representation of Figure 2-8

As shown in the figure, 2 of the 3 scenarios would have incurred a false alarm if

the decision was made to alert at x(t). The result would be a high rate of false alarms

due to the inability to predict the outcome of the action from current state vector.

Even if the decision to alert is justified, such as in Figure 2-8a, there can be

further uncertainties that affect the new state trajectory in response to the alert. These

uncertainties (e.g. response time and avoidance action) would inevitably influence the

likelihood that the hazard could be avoided. The outcome would be a direct impact of the

correct detection and missed detection (by late alert) rates, P(CD) and P(MD),

respectively.

Further uncertainties, such as those due to stochastic randomness, can enter into

the problem as well. In the case of aircraft, this could include fluctuations in speed,
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heading,or altitudeof eachvehicleinvolved. Theremayalsobecoursechangesnot

knownatthepresenttime thatcouldby initiatedby theflight crew to avoidweatheror

meetperformancegoals(e.g.time of arrival, fuel savings,flight comfort). Thechanges

mayalsobe inadvertentdueto pilot blundersto maintainanexpectedcourseof flight.

All this leadsto uncertaintiesin the statetrajectorywhich canaffect theoutcomeof each

alertingdecision.

2.6 System Operating Characteristic Analysis

The approach of the System Operation Characteristic (SOC) method has its roots

in signal detection theory. It was developed by Kuchar [1995, 1996] to help analyze and

design alerting thresholds by examining the tradeoff between successful alerts and false

alarms. Much of the method is based on the use of probabilistic trajectory analysis in the

propagation of the state vector.

2.6.1 Probabilistic Trajectories and the Probability of Conflict

As stated before, the prediction of future events inevitably involves uncertainties,

and the same is true of the state trajectory. In general, the path of the true state trajectory

is not known exactly, and it can be assumed to be probabilistic and include uncertainties

to some degree. The concept is detailed in the following Figure 2-10 where the shaded

area represents possible state positions, or uncertainties, in the future of the system.

Usually, but not always, the uncertainty in the trajectory will tend to grow with time as it

naturally becomes more difficult to predict further into the future.
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Figure 2-10: State Trajectory with Uncertainties

In state-space, the term conflict wilt refer to the occurrence of an undesirable

event (i.e. hazard space incursion of the state vector). In estimating the likelihood of its

occurrence, the term Probability of a Conflict, P(C), will be used.

2.6.2 Nominal and Avoidance Trajectories

To determine if an alert is warranted in a given situation, it is necessary to

examine the hypothetical outcomes of the alert / no alert decision. If no alert is issued,

the state continues along what will be termed the projected nominal trajectory, denoted as

N. Similarly, in response to an alert, there is a different projected path that is taken called

the avoidance trajectory, denoted A. Both N and A are, in general, probabilistic due to

the uncertainties in the current and projected future states. During an avoidance action,

there are many variables which may make it difficult to predict the exact path taken,

especially with human involvement (e.g. different response times and actions).

Trajectory A may also include the possibility that no action is taken in response to the

alert.
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Theprobabilityof conflict alongN andalongA aredenotedPN(C) and Pa(C),

respectively.. In Kuchar [1995], the Probability of a False Alarm, P(FA), and the

Probability of a Successful Alert, P(SA), are defined as:

P(FA) = 1 - Pu(C) (2.2)

P(SA) = 1 - PA(C) (2.3)

In the above two equations, both P(FA) and P(SA) are conditional upon an alert being

given. Also, P(SA) is specific to a particular avoidance trajectory, A.

2.6.3 SOC Curves

In previous work, Kuchar [1995, 1996] explored the performance tradeoff

between false alarms and successful alerts. This technique is based on the System

Operating Characteristic (SOC) Curve which facilitated the visualization of the exchange

between the two parameters. In any conflict detection decision, there is usually some

probability that the alert is not needed. AdditionalIy, there is some probability that the

alert is successful in prevent a conflict. As one varies the time at which the alert is

generated, these probabilities trade off against one another as described by an SOC curve.

In order to determine if an alert is successful, it is necessary to consider what

resolution action occurs when the alert is given. Some conflict resolution maneuver must

be assumed so that it can be determined whether a conflict is ultimately averted by the

alert. Thus, a SOC curve is specific to both the encounter geometry and the type of

resolution action that is prescribed. In simple terms, a SOC curve is a plot of P(SA)

versus P(FA) along a specific nominal path, N, and for a specific avoidance maneuver,

A.
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Thechoiceof avoidancetrajectoriesfor conflict analysiswill dependon the

performance criteria to be met. The criteria can be safety-based, in which the trajectory

is to reflect an aggressive maneuver, or it can be more cost driven, in which the trajectory

represents a more strategic maneuver.

A sample SOC plot is shown in Figure 2-11 for a path on a direct collision course

to a hazard. The points 1 and 2 correspond to different alerting times, with point 1 being

earlier than point 2. If the conflict decision is made while the hazard is far away, (upper

right comer of the plot), the probability of a successful alert is likely to be very high

(P(SA) --_ 1); but because action is taken so early, the probability of a false alarm is also

high (P(FA) ---) 1). With the hazard far in the distance, there is typically too much

uncertainty in the nominal N trajectory to alert without knowing if it was really

necessary. As the conflict alert decision is delayed and the hazard continues with

increasing threat, the probability of successful alerts and false alarms both decrease as

shown by the curve. If alerts are delayed too long, the alerts will not be successful

(P(SA) ---) 0) and there will be no false alarms as well (P(FA) _ 0).

1.0

2 1

P(SA)

0
0 P(FA) .0

Figure 2-11: Typical SOC Plot
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The SOCcurveshowsthetradeoffbetweenP(FA) and P(SA) as a function of

the alerting threshold location for a series of decision points along a chosen path. The

curve in Figure 2-11 clearly shows the effect of delaying the alert on reducing the chance

of a false alarm. The corresponding drop in a successful alert, P(SA), is also evident.

The location of the threshold can be examined relative to the desired level of nuisance

alerts and safety margin. It is also possible to utilize the SOC curve as part of a

preliminary design evaluation for setting the alert threshold.

In Figure 2-12, a pictorial perspective on the underlying principle behind the SOC

is given. Far away, with the hazard at location 1, there is usually sufficient uncertainty to

warrant delaying an alert so that false alarms are not too predominant. However, waiting

too long may result in an unavoidable hazard (missed detection). The state-space analogy

was explained back in Figure 2-7 with the discussion on the alert space size.

As mentioned earlier, high rates of nuisance alerts can lead to mistrust of a

system, and thus, also indirectly impact safety. Deciding when to alert (i.e. threshold

placement) is one of the most crucial elements in alerting design. The choice becomes

obvious in Figure 2-12 when the avoidance trajectory, A, is superimposed over N. To

ensure the alert is successful, it must be issued prior to a high likelihood of conflict along

the avoidance trajectory (location 2). In other words, the alert must be in time for the

aircraft to avoid the hazard. This appealing concept is captured nicely in SOC plots.
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3.

Figure 2-12: Delaying the Alert

The shape of the SOC plot can provide a lot of information regarding the possible

performance of the alerting system. A curve that allows placement of the threshold at the

upper left comer (P(FA) = O, P(SA) = 1) is considered ideal since there would be no

false alarms and only successful alerts (see Figure 2-13). Due to uncertainties in the

conflict dynamics, however, the SOC curve will generally lie somewhere below this

optimal point. The closer a system is able to operate near this optimal point, the more

effective the system will be in terms of providing an acceptable level of safety while

minimizing unnecessary alarms.
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Figure 2-13: Various Shapes of the SOCCurve

A curve that lies diagonally from the origin (P(FA) = O, P(SA) = O) to the

upper fight comer (P(FA) = 1, P(SA) = 1) represents either a poorly chosen avoidance

maneuver for the particular encounter or an inherently difficult situation due to the

uncertainties involved. In such circumstances, the alert basically has no effect in altering

the outcome of a conflict. The alert is just as likely to produce a conflict as if no alert

was given. Thus the more the SOC curve deviates upward from the diagonal, the more

likely a better alerting decision can be determined.

It is ats0 possible that an alert can induce a negative consequence in the encounter

situation. In this case, the avoidance trajectory incurs a higher likelihood of a conflict

that along the nominal trajectory when no alert is given. The resultant SOC curve would

deviate below the diagonal as shown in Figure 2-13.
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Thecharacteristicbendor dropin P(SA) that is sometimes found in an SOC plot

can be largely attributed to the specific avoidance maneuver being examined, but is also

influenced by the underlying uncertainties in both the nominal and avoidance trajectories,

N and A, as well as that from the hazard, H. In general, if no uncertainties were present

and the future trajectories could be predicted with utmost precision, then an ideal alerting

system would most likely be possible. A point at the upper left comer would exist

provided the alert is given early enough. Different maneuvers would affect the required

alert time, though. A 30 degree bank turn maneuver performed by an aircraft may

provide an ideal system for a specific encounter if the alert is given prior to 15 seconds

prior to predict conflict, while a 1000 feet per minute climb, in the same situation, might

need the alert to be given 23 seconds ahead of time. But assuming there are no

uncertainties involved, both maneuvers could provide perfectly ideal alerting thresholds

( P(FA) = O, P(SA) = 1).

Each of the 4 extreme comers in the SOC diagram represents an absolute

certainty condi.tion. Thus, if no uncertainty is present in the trajectory or pos!tion of the

aircraft, the state must lie at one of these comer positions. Either a conflict will exist

along the nominal trajectory, N, or it does not. Either the conflict can be avoided with the

avoidance trajectory, A, or it can not. These 4 extreme conditions are shown in Figure 2-

14. Although it is assumed here that the trajectories are known perfectly, it is still

possible for the SOC curve to be at any of the comer positions even with some

uncertainties present in the trajectories. Most likely, however, the locus of points will lie

somewhere within the boundaries of the 4 comers.
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b) Alert Need and Alert Successful (P(FA) = 0, P(SA) = 1)

P(SA)
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c) Alert Needed but Alert Unsuccessful (P(SA) = 0, P(SA) = O)
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P(SA)
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P(FA)

d) No Alert Needed and Alert Induces Conflict (P(FA) = 1, P(SA) = O)

Figure 2-14: Four Corners of the SOC Diagram

36



Thus the shape of the SOC curve can also serve as a visualization tool to gauge

the effects of uncertainties in the encounter scenario. If a high level of uncertainty

existed in a trajectory (either N or A), then the curve would tend to diverge from the

comer positions. The result could be used to determine if a more severe avoidance option

is necessary, or even to consider a different type of maneuver altogether - one that is

more robust to the uncertainties involved in the scenario.

2.7 Summary

The use of the state-space representation was shown as a way of presenting the

concepts associated with alerting system design. It was used to explain the ideas behind

alerting performance and the parameters associated with the different alerting decision

outcomes: correction detection, missed detection, false alarm, and correct rejection.

Also, the System Operating Characteristic technique was highlighted as a method for

examining different performance tradeoffs and provides a framework for analyzing

alerting performance in later chapters.
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Chapter 3

Conflict Detection and Resolution Methods

3.1 Conflict Detection and Resolution

Methods for maintaining separation between aircraft in the current airspace

system have been built from a foundation of structured routes and evolved procedures. In

this framework, humans have been an essential element in this process due to their ability

to integrate information and make judgements. However, because failures and

operational errors can occur, automated systems have begun to appear both in the cockpit

and on the ground to provide decision support and to serve as traffic conflict alerting

systems. These systems use sensor data to predict conflict between aircraft, alert humans

to the conflict, and may also provide commands and guidance to resolve the conflict.

Together, these automated systems provide a safety net should normal procedures and

controller and pilot actions fail to keep aircraft separated beyond established minimums.

Recently, interest has grown into developing more advanced automation tools to

detect and resolve traffic conflicts. These tools could make use of more advanced

technologies, such as datalink of current aircraft flight plan information, to enhance

safety and enable new procedures to improve air traffic flow efficiency.

To begin, it is necessary to have a clear definition of what constitutes a

conflict. For the majority of this thesis work, a conflict will refer to a situation in which

an aircraft experiences a loss of minimum separation with another aircraft. In other

words, the distance between them violates a preset criterion that is considered
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undesirable.Oneexamplemightbea 5nauticalmile horizontaldistancebetweenaircraft

anda 1000feetvertical separation(currentAir Traffic Controlstandards).Theresultis a

protected zone or volume of airspace surrounding each aircraft that should not be

infringed upon by another vehicle (see Figure 3-1). The protected zone could also be

defined much smaller depending upon the goals of the alerting system (e.g. parallel

runway incursions). It could also be specified in terms of parameters other than distance,

such as time. In any case, the underlying conflict detection and resolution functions are

similar although the specific models and alerting thresholds would likely be different.

5 nmi .l

i000 '

Figure 3-1: Example Protected Zone Around Aircraft

Any traffic management system in which vehicles are monitored and controlled to

prevent collisions has certain basic functional requirements. The objective of a conflict

avoidance system is to predict the occurrence of a conflict, communicate (alert) the

detected conflict to the human operator, and then, in some cases, assist to resolve the

conflict situation, These three fundamental processes can be organized into several

phases or elements as shown in Figure 3-2.

To begin, the traffic environment must first be monitored and the appropriate

aircraft state information must be collected and disseminated using sensors and

communication equipment. These states provide an estimate of the current traffic

situation (e.g. aircraft positions and velocities). However, due to sensor limitations, the

information may not be complete enough to describe the actual situation. For example, a
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systemmayonly haveaccessto rangeandrangerateinformationandunableto determine

bearing(recall thestate-spaceexampleof Figure2-9). Additionally, thereis generally

someuncertaintywithin thevaluesof theavailablestates.

nviro_ent

;[ State
Estimates Intent

m Dynamic

Trajectory
Model

-_

=--_==--=---==: projectedl

I Metric I_ States | -., .........
_l Criteria .

_1 (Threshold) .... . _

Detection

Phase

Resolution

Phase

Figure 3-2: Conflict Detection and Resolution Framework

Information regarding the future intent of aircraft may also be available to the

alerting algorithm. Such data might include the waypoints in flight plans, level-off

altitudes in vertical maneuvers, or commanded heading during turns. The information
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canbeusedto provideadditionalpredictionaccuracyto thefuturetrajectoriesof each

aircraft. It is alsopossiblethatthe intentof anactionwill notbe followed sothereis

likely somepotentialuncertaintiesin the informationaswell.

Continuingon,a dynamictrajectorymodelisusuallyrequiredto projectthe states

into thefuture in orderto predictwhetheraconflict will occur. Thisprojectionmaybe

basedsolelyon thecurrentstateinformation(e.g.astraight-lineextrapolationof the

currentvelocity vector)andmayincludeadditionalintent information (e.g.theflight

plan). As shownbeforein thepreviouschapter,the importanceof this modelcannotbe

understatedasit hasadirect impacton theoverallperformanceof thesystem.Any

predictionof futureeventsinherentlyinvolvessomeuncertainties,andthechoiceof

dynamicmodel to estimatefuturestatesis noexception.

Theparametersusedfor theactualalertingdecisionwill bereferredto asthe

alertingmetrics. Here, information from the current and predicted states are combined to

provide an overall measure of threat to the occurrence of a conflict. Some example

metrics include the relative range, closure rate, predicted miss distance, or the estimated

time to closest point of approach. These metrics form the state space of the alerting

algorithm as explained in Chapter 2.

Given the conflict metrics, a discrete decision (Conflict Detection) is then made

regarding whether or not to inform the human operator of a threat. Often, this decision is

based upon a simple check against specific theshoIds (e.g. take action if predicted miss

distance is less than 5 nautical miles), but could involve a more complex set of rules. The

thresholds may include corrective adjustments or safety buffers to account for

uncertainties as well.
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Note,however,thatthepredictionof aconflict neednot alwaysrequirea

notification. A conflict maybepredicted,but its occurrencemaybetoo far into the

futureor toouncertainto beconsideredathreatatthecurrenttime. The decisionto alert

couldalsohingeuponuserpreference,experience,or operationalfactors. For the

purposeof this thesiswork, aconflict is detected once it is both predicted to occur and it

has been determined to be appropriate to alert the operator.

In some cases, notification of a conflict is all that is required of the alerting

system (the human operator is expected to resolve the conflict independently). In other

cases, a Conflict Resolution phase may be initiated. This involves determining an

appropriate course of action and transmitting that information to the operator. For

example, the system might present to the pilot of an aircraft the target rate of climb or

descent necessary to avoid a potential collision with another aircraft. Although conflict

resolution is shown as a single block in Figure 3-2, it requires its own set of current state

estimates, a resolution maneuver trajectory model, and decision criteria which may be

different from those used in the Conflict Detection phase. This simplification in the

figure was intended to make the schematic less cluttered without diminishing the

meaning of the concepts.

The response of the human to the alert is also critical to the design and efficacy of

the alerting system as well. In many instances, the human's response can be included to

some extent within the determination of the resolution maneuver, such as a 5 second

delay. However, the human response is inevitably variable and needs to be considered as

another source of uncertainty in the overall scheme of the conflict alerting process.

In the framework of Figure 3-2, conflict detection can be thought of as deciding

when action should be taken while conflict resolution can be looked upon as determining
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how or what action should be performed. In practice, there may not always be a clear

separation between alerting and resolution, however. Deciding when action is required

may depend on the type of action to be performed; and similarly, the type of action that is

required may depend on how early that action begins.

The multitude of various metrics and thresholds and also the interdependence

between conflict detection and resolution are factors which make alerting system

development challenging and interesting because there are many feasible design

solutions. As will be shown in the next section, there are a number of ways to tackle the

problem and develop a feasible solution. A more difficult task is determining the best

ofle.

3.2 Survey of Algorithmic Designs

To provide better insight into different methods of conflict detection and

resolution, a literature review of previous research approaches and current operational

and developmental systems was performed. A total of over 60 different papers were used

and a more detailed discussion can be found in Appendix A. These methods do not

represent an exhaustive list by any means, but are believed to encompass a majority of

the recent approaches to the conflict detection and resolution problems.

3.2.1 Current Operational Systems

3.2.1.1 Traffic Alert and Collision Avoidance System (TCAS)

The Traffic Alert and Collision Avoidance System (TCAS) has been the standard

that many approaches to the conflict detection and resolution problem have been

compared to. The system has been implemented on U.S. jet transports since the early

1990's as concern over the potential of future mid-air collisions grew. The algorithm is
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morecomplicatedthanwill beexplainedhere,sothereaderis askedto refer to Ford

[1986,1987],Kuchar[1995],Miller et al. [1994],RTCA [1983],orWilliamson [1989]

for amoredetaileddescription.

In abbreviatedterms,theTCASlogic calculatesthreatin thehorizontaland

vertical dimensionsseparatelyandalertsif bothcriteriaaremet. Thealgorithm is based

on therelativerange(r) andrangerate(/'), andalsotherelativealtitude(h) andaltitude

rate(/_). TCAS usesa two-stageprocesswith acautionaryalertcalledtheTraffic

Advisory (TA) andawarningalertcalledtheResolutionAdvisory (RA). RAs provide

vertical avoidancecommands,butTAs aremerelycautionsandlackany resolution. The

following discussionwill focusonRA alertsonly.

The TCASthresholdsareactuallymorecomplex,but for themostpart,canbe

summarizedby whatis commonlyreferredto astheTauCriterionshownin Equation3.1.

r - DMOD

_/-
< v (3.1)

v is a threshold parameter with units of time, and DMOD is a buffer distance used to

account for slow closure rates, ensuring that aircraft will not drift closer than the DMOD

distance without receiving an alert [Williamson, 1989]. Within the alerting logic, these

two parameters are varied depending on the altitude and whether or not the aircraft are

maneuvering vertically. These values are summarized in Figure 3-3.

In the notation used in the figure, the first value listed for v is the alerting

threshold for the TCAS equipped aircraft if it is level, or is climbing or descending in the

same direction as the threat but at a lower rate; else the second value is used.
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Figure 3-3: TCAS Version 6.04A RA Logic Parameters

The vertical criterion is a little more complicated, but in essence, also utilizes a

Tau Criterion to estimate the time to co-altitude. It includes various buffers and

parameters (ZTHR, ALIM) that are variable depending on the flight altitude and relative

vertical separation.

The left side of the Equation 3.1 can also be thought of as an estimate of the time

it will take for the range to decrease to a distance, DMOD, between aircraft [Miller et al.,

1994]. From this point of view, the TCAS logic is assuming a straight line projection

model and DMOD is acting as a buffer to account for possible deviations or sources of

error.

A possible state-space representation of the alerting logic at work is shown in

Figure 3-4. Here, the aircraft are assumed to be in level flight (30,000 feet) and traveling
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in oppositedirections,eachwith avelocity of 400knots. For caseA, theopposing

aircraftareoncoursefor adirectcollision; while in caseB, theaircraftwill missby 5

nauticalmiles.

1
5 nmi
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A
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B
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i
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0.0 10.0 20.0

r (nmi)

= 30 sec

Figure 3-4: TCAS Example

Notice that for a range greater than about 10 nautical miles, it becomes

increasingly more difficult for the TCAS logic to differentiate between the two cases.

The z threshold is 30 seconds for this particular scenario, which is just below the lowest

point for which case B would trigger an alert. Trying to extend the warning time of

TCAS in its present form would only introduce an increase in false alarms as shown from
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thissimpleexample.For instance,raising v beyond40secondswould inevitably cause

anRA alertfor caseB eventhoughtheaircraftwouldbeexpectedto misseachotherby 5

nauticalmilesor more.

TheparametersDMOD, ZTHR, ALIM, and _"effectivelydeterminethe

frequencywith whichRAs aregiven. Reducingthesevalueswill reducethealertrate

andnumberof disruptionscausedby falsealarms[Miller et al., 1994]. However,the

tradeoffis therisk of missedalertsdueto insufficientwarningtime. Thedesireis a

balancebetweenfalsealarmsandcollisionprotectionthatTCAS is intendedto provide.

To achievethisbalance,thevariousdesignparameters(e.g.DMOD, v) were set

using an iterative, trial-and-error approach run through literally millions of simulation

scenarios involving many hypothetical encounter geometries [Miller et al., 1994].

Modifications were also made from data and user comments during actual in-flight

operations.

3.2.1.2 Traffic and Collision Alert Device (TCAD)

The Traffic and Collision Alert Device (TCAD) is a low cost, low complexity

conflict alerting system directed at the general aviation industry [Ryan and Brodegard,

1997]. Its algorithm logic for conflict detection is based simply on range and altitude

deviations alone, pilot selectable in one of three sensitivity levels: en route, standard, and

terminal (see Figure 3-5). The basic function of TCAD is provided in an audible alarm

and a numerical display of the range and relative altitude whenever another aircraft

penetrates the alert space set by the pilot. If multiple aircraft are encountered, the data

from the most prominent threat (based first on altitude, then on range) is shown.
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En route Standard Terminal

Figure 3-5: TCAD Alert Zones

The threshold parameters (range and relative altitude) defining each alert zone are

actually left to the discretion of the pilot. If the threshold is set too high, extraneous false

alarms will result; if it is set too low, warning time is compromised. The result is a

tradeoff between false alarms and missed detections which the pilot must optimize to his

or her own preference.

3.2.1.3 Ground Proximity Wanzing System (GPWS)

Although the Ground Proximity Warning System (GPWS) is not designed to

prevent traffic collisions, many of the problems encountered in alerting design can be

seen its development (e.g. prediction of future hazards in presence of uncertainty, and

tradeoff between false alarms and missed detections). In the case of GPWS, the hazard is

terrain and the system is intended to prevent crashes while in controlled flight (no

mechanical failures). The system has been mandated in jet transport aircraft in the U.S.,

and since its introduction in 1975, the number of Controlled Flight Into Terrain (CFIT)

accidents has been reduced considerably [Kuchar, 1995]. However, CFIT accidents still

occur worldwide and remain the leading cause of aircraft fatalities. Poor pilot response,

either from delayed reaction or inadequate avoidance maneuver, was found to have

contributed to many of these accidents. Previous experience with nuisance alerts was

suspected to have played a role in a number of these poor responses [DeCelles, 1991].
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At first glance,overly sensitivealertsappearto beconservativeandon thesafe

side. Theeffectsfrom falsealarmsseemto beprimarily onefficiency. However,when

alertsarejudgedto beerroneousor unnecessary,trustin thesystemvalidity becomesan

issue. If thefallacy is excessive,thencomplacencymaysetin resultingin delayedpilot

responsetimes,inappropriateactions,or evenno actionat all. Thussafetybecomesa

directfallout of falsealarmswhenhumanoperatorsareinvolved.

For GPWS,thedilemmacomesmainly from the limited amountof terrainhazard

informationavailableto the system.Only thealtitudefrom thecurrentposition,both

MeanSeaLevel (MSL) andAboveGround(AGL) is utilized in thecalculations. It is

basedononly onedimensionof theterrain- thealtitudedirectly below theaircraft. No

information is availableto theGPWSregardingtheterrainaheador to theside. The

GPWSmustperforma derivativecalculationfrom altitudeseparationaloneand

extrapolatetheexpectedtime to impactfrom this closurerateestimate.Thepredictionof

theupcomingterrainhazardcanbehighly inaccuratefrom this informationasshown

below in Figure3-6.

Extrapolated

Terrain Profile

Profile

a) Accurate Extrapolation

Ext rapol at ed

Terrain Profile

J
J

True Terrain

Profile

b) Inaccurate Extrapolation

Figure 3-6: GPWS Measurement and Prediction of Terrain [Kuchar, 1995]
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The lackof knowledgeof theterrainfeaturesprominentlyshowsthedifficulty in

thedesignandoptimizationof alertingsystemswhenuncertaintyis involved. In thecase

of theGPWS,theuncertaintiescomefrom thelackof informationabouttheupcoming

terrainfeaturesaswell asthelargevariability thatcanoccurin pilot responsetimesand

avoidanceactions.Thesefactorsled to aniterative,evolutionarydesign,both from

simulatedscenariosandactualcasestudies,which proposesto balanceunnecessaryalerts

andsufficientwarningtimes[Bateman,1994].

3.2.2 Additional Algorithmic Designs

There are many other methods which have been proposed to handle the conflict

detection and resolution problem (see Appendix A). The problem is not limited to

aerospace applications, but spans other areas such as automobile, naval, and robotic fields

as well. Some are based on range, estimated miss distance, expected time to conflict,

optimal escape paths, or force/potential fields. In all these cases, the element of

prediction is inherently involved in determining the future behavior of the vehicles. The

prediction occurs both in detecting a conflict and in resolving it. In many instances, the

resolution requires the vehicles to comply exactly to the computed avoidance route in

order to obtain full benefit from the calculated solution. However, as stated previously,

there are uncertainties involved that will likely influence the final result.

Often, the solution is optimized and applied to only a few example scenarios.

Most examples are given for 2-D horizontal conflicts, though it is noted sometimes that

the methodology could be extended to the vertical dimension as well. Much of this is due

to the relative ease of the solution in the planar case, especially for pairwise vehicle

encounters where analytical soIutions exist. Also, the system's overall performance can

only be judged in real-life operation, or estimated in simulations over a large number of
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encountersituations. If donein simulations,theperformanceresultis often stated in

probabilistic terms such as false alarm and missed detection rates. Parameters in the

algorithm are typically set to balance these performance measures. For example, the

maximum look-ahead time of a conflict probe might be set to 20 minutes to minimize

nuisance alerts (or in the case of TCAS, around 30 to 45 seconds), but still provide

reasonable warning time.

3.3 Insights from Survey

Based on the review of the different methods of conflict detection and resolution,

there were several important insights gained as described below.

3.3.1 Variety of Threshold Metrics

There did not appear to be a clear winner or single solution to the problem of

conflict alerting. There were several different combinations of metrics that were

mentioned, yet no analytical proof to determine the optimal set. Mostly, the variables

utilized in the operational systems were the ones which were obtainable with the limited

type of sensors available to the designers at the time of implementation. Some of the

more commonly mentioned metrics used for conflict detection were range, range rate,

altitude, altitude rate, expected time to closest point of approach, estimated miss distance,

and probability of a conflict. Notice that all these variables have a natural correlation to

the existence of a future conflict. Take range, for example. The likelihood that two

vehicles would ever interfere with one another is intuitively higher if their separation is

10 miles, as opposed to being 100 miles apart (there is simply more volume of airspace

possible for the future trajectory).
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In general,themoreinformationavailablefor usein thealertingalgorithm,the

betterthechancesfor improvingprediction.For example,TCAS (whichcurrentlyuses

rangeandrangeratein its horizontalthresholdcriterion)couldbenefitfrom additional

datato predictexpectedmissdistance[Burgesset al., 1994]. Also, oneof themore

talkedaboutitemsin recentliteratureis theconceptOfintentinformation. This typeof

predictiveinformationwouldallow for abetterestimateof thefuturestatetrajectories,

andthus,reducetheuncertaintyin theentireconflict alertingprocess.

3.3.2 Prevalence of Ad Hoc Approach to Alerting Design

Though there were many possible metrics utilized in the different conflict alerting

approaches, it was often mentioned that the appropriate setting of the thresholds was a

tradeoff between overly sensitive nuisance alerts and adequate warning times. Where the

process was actually described [Drumm, 1996; Bradley, 1992; Warren, 1997, Miller et

al., 1994; Williamson, 1989], the settings were determined from an iterative, ad hoc

approach using scenario simulations. The concept is shown in Figure 3-7.

Metrics

!
Alert

Threshold

Criteria

X A

I

Validation

Simulation

Performance

Measures

P(SA)

P(FA)

Figure 3-7: Ad Hoc Approach
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Initially, thethresholdsaresetatpredeterminedvaluesandput throughaseriesof

testscenarios.Often, thesearedonethroughMonteCarlosimulationsandthethresholds

areadjustedaccordingly,dependingon its performance.It is acyclic processwherethe

newly adjustedthresholdsarerepeatedlytestedin simulationandtheresultstabulated

with thealertingperformancecommonlyjudgedby useof probabilisticmeans.The

designmust usuallypassspecifiedprobabilisticparametersvery similar to those already

discussed in this work (e.g. false alarm rate, missed detection rate). If they are not met,

the thresholds must be readjusted and the cycle repeats itself several times before it

becomes satisfactory to the designers. In the progression of the alerting system through

actual implementation, the thresholds will likely be altered again to compensate for

problems encountered in the field. This type of threshold adjustment is considered an ad

hoc process and can be expected to some degree from any design. Some references to

this type of approach can be found in the TCAS design [Miller et al., 1994; Drumm,

1996; Bradley, 1992; Williamson, 1989] and the Airborne Information for Lateral

Spacing (AILS) system [Winder and Kuchar, 1999].

3.3.3 Three Trajectory Projection Methods

The importance of the dynamic trajectory model in the conflict alerting system

design cannot be understated, especially in the presence of uncertainty. As defined by

Neelamkavil [1987],

"A model is a simplified representation of a system (or process or theory)

intended to enhance our ability to understand, predict, and possibly control the

behaviour of the system. "'

The use of a trajectory model, either in the design of the thresholds or directly in the

alerting logic itself, is simply to predict the occurrence of a possible conflict situation and
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the likelihood of avoidingit. In Chapter4, theeffectsandconsequencesdueto modeling

errorswill bediscussedin detail,but for now,a quicklook will begivento someof the

morecommondynamicmodelingmethodsusedin conflict detectionsystems.

Pastapproachesto conflict analysishaveusuallyreliedononeof two propagation

methodsin themodelingof futureaircraft trajectories:1) single path and 2) worst case.

These two approaches can be considered deterministic models in that a definitive output

or conclusion is produced for a given set of state inputs. A conflict either will occur, or it

will not, resulting in a binomial output of a hit (1) or miss (0), respectively.

On the other hand, the outcome of a single event cannot usually be determined

perfectly from a stochastic type model. For a specific set of state inputs, the result is not

a precise outcome (the same inputs can produce a different output). There is some

random variability involved and thus the output is usually expressed in terms of statistical

properties or probabilities. Incidentally, a stochastic system will approach a deterministic

one when the probability of the outcome is either 0 or 1 for each specific set of input

states.

Take, for example, Figure 3-8, where two aircraft are in parallel, level flight with

some fluctuations or variability in their flight paths. In one instance (Figure 3-8a), the

aircraft never violate each other's protected zone. However, in Figure 3-8b, given the

same set of initial aircraft state conditions, minimum separation is now violated at some

future time. This is the concept of stochastic or probabilistic trajectories and is the main

focus behind the methodology developed within this thesis.
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(,)
a) No Conflict Occurs

;" ,

b) Conflict Occurs

Figure 3-8: Example of Random, Stochastic Trajectory

3.3.3.1 Single Path Approach

In the single path approach, future aircraft positions are assumed to follow one

specific trajectory (in many cases, usually along straight line projections from the current

estimated velocity vector). This is the simplest approach and conflicts can easily be

determined if the trajectory is not too complicated; for example, when heading and

altitude changes are simply modeled as consecutive straight line segments. Figure 3-9

shows an example with two aircraft traveling in opposite directions. Assuming the

current velocity vectors are held constant, the event of a conflict can be readily

determined from analytical geometry. For the particular case shown in Figure 3-9, no

conflict would be found. Many examples exist in the literature which utilize the single
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pathtrajectorymethod. A smallsamplesetcanbe foundin Andrews, 1978;Koseckaet

al., 1997;Krozel et al., 1996;SridharandChatterji, 1997;Bilimoria et al., 1996;Durand

et al., 1995;Eby, 1994;Ford 1986,RTCA, 1983;HavelandHusarcik, 1989;Love, 1988;

andZeghal,1994.

Figure 3-9: Example Single Path Approach for Conflict Prediction

It is obvious that the single path model does not compensate for uncertainties in

the dynamic trajectory. The outcome is deterministic and results in either a hit (1) or a

miss (0). In this type of modeling scheme, uncertainty and possible variability in flight

trajectories are typically considered in the following stages of the metric definition or the

threshold criteria using an iterative ad hoc approach to set the various threshold

parameters, sometimes with appropriate safety buffers.

3.3.3.2 Worst Case Approach

In the worst case approach, every possible path (within expert reasoning) is

considered and limited usually only by the aircraft's aerodynamic capabilities. The

method is actually compensating for trajectory uncertainty within the dynamic model, but

accuracy in estimating the occurrence of conflict is somewhat compromised (the concept

of prediction accuracy is covered in the Chapter 4). Figure 3-10 is an example of this
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approachfor thesamesituationasinFigure3-9. Unlike thesinglepathcase,a conflict

wouldbepredictedhere.Theworstcaseassumptiontakestheconservativeapproachof

underliningsafetyandit would seemmostusefulin short,time critical situations.In long

term conflicts,it maybe lesspracticalsincetheswathof volumethat couldbe

encompassedby all thepossibletrajectorieswouldbeenormous.For instance,anaircraft

thatcanbeexpectedto climb or descendat 2000ft/min wouldengulfanairspace20,000

ft aboveandbelow it in afterjust 10minutes.Previousworkemployingworstcase

analysiscanbefound in FordandPowell, 1990;RTCA, 1995;Ratcliffe, 1988;Shepard

et al., 1991;ShewchunandFeron,1997.

Figure 3-10: Example Worst Case Approach for Conflict Prediction

In order to confine airspace coverage, the prediction envelope is typically range or

time limited at the metric or alerting threshold stages (e.g. look ahead time is bounded to
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lessthan5minutesorrangeto lessthan50miles). Again, this tendsto leadto anadhoc

approachof maintainingadesirablecoveragewithoutbeingoverly conservative.For

example,would5 minuteslook aheadtime still be toolarge,or would3 minutesbemore

appropriate?Again, theanswermayrequiresimulationsto establishasuitablemedium.

3.3.3.3 Probabilistic Approach

In between the previous two modeling methods, however, is a middle ground

where the various possible trajectories are weighted by their probability of occurrence.

Uncertainties are modeled directly within the state estimates and the dynamic model.

This approach has the distinct advantage of forcing an explicit, quantifiable measure of

the uncertainty and accuracy affecting the conflict estimate.

Both the single path and worst case approaches provide either a hit (1) or a miss

(0) in their evaluation of a conflict directly from the dynamic model. In the probabilistic

approach, the prediction is in terms of the likelihood of a conflict, a value that can be

explicitly attributed to the effects of uncertainties in the situation. A weighted value

between 0 and 1 is determined referring to the estimated probability of a conflict, P (C)

in the future. It was shown in Chapter 2 that P(C) is a direct indicator of (or link to)

alerting performance. Thus this method provides a means for direct examination of the

various levels and sources of uncertainty in the aircraft trajectory on the alerting system

performance. Individual parameters can then be analyzed for their impact on the design.

To some degree, both the single path and worst case approaches can be

considered subsets or special cases of the probabilistic approach (much the same way that

a stochastic system can approach a deterministic one). In the single path method, it is

assumed that the aircraft will follow a particular course with an absolute probability of

1.0 with no possibility of deviation, so the distribution is a single discrete point. For the
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worstcaseapproach,anypossibilityof conflict in thedesiredregionof interestis

roundedconservativelyupwardto a P(C) of 1.0. It does not really matter what

trajectory distribution is inferred here, since any likelihood of intrusion would be

considered off limits.

Though the probabilistic approach has been utilized sparingly in the past [Kuchar,

1996; Paielli and Erzberger, 1997; Heuvelink, 1988; Rome and Kalafus, I988; Taylor,

1990; Bakker and Blom, 1993; Williams, I993; Warren, 1997, Prandini et al., 1999;

Innocenti et al., 1999], this thesis work expands the technique to a host of more complex

encounter scenarios and adds a more theoretical basis underlying the purpose of the

methodology. With the advent of high speed computing, the feasibility of the sometimes

arduous or complex probability calculations is shown to be easily realized. This notion

will be explained further in a later chapter.

3.3.4 Accounting for Uncertainties

In some approaches to the problem, the aircraft trajectories are assumed to be

known exactly in 4-D. The determination of a conflict in this manner is relatively

straightforward. Either a conflict will occur or it will not. Either a conflict can be

avoided or it cannot. Approaches such as these are mainly concerned with obtaining a

optimal solution based on some monetary or workload cost function.

However, in many cases, there is usually some leeway in the design approach to

account for uncertainties that may occur in the prediction of a conflict and the ability to

avoid it. Using TCAS as an example, the parameters such as DMOD, ZTHR, and ALIM

act as buffers to account for uncertainties in the prediction process. This is a common

approach with the single path projection method. The actual values of the buffers are set

using an iterative, trial and error process (ad hoc) as discussed in Section 3.3.2. The final
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parametersaresetfrom abalancebetweennuisancealerts(dueto falsealarms)andlate

alerts(dueto misseddetections).

In theworstcaseaproach,theuncertaintiesin thefuturepathareaccountedfor

somewhatin thepathprediction,butnotexplicitly. It doesnot takeinto accountthe

likelihood for whicheachof thepathswouldoccur. All pathswithin boundsare

consideredequallylikely. Also, a look aheadtime limit is usuallyemployedsoasnot to

enveloptoo muchopenairspace.Theactualboundariesareagaincommonlysetusingan

iterative,trial anderrorprocessto setabalancebetweenfalsealarmsandmissed

detections.

In theprobabilisticapproach,theuncertaintiesaremodeleddirectly within the

trajectoryestimation.This providesdirectaccountabilityof thesourcesof theerrorsin

thepredictionprocess.It is themostdirectmethodof includinguncertaintiesin the

conflict estimation.As will beexplainedin a laterchapter,theadhocapproachis merely

anindirectmethodof injectinguncertaintiesin thealertingsystemdesign

3.4 Summary

In this chapter, the problem of conflict detection and resolution was introduced.

The resulting framework was the building block upon which subsequent discussions

could be made. A survey of current operational and developmental approaches to the

conflict alerting problem was also performed to provide insight into the design process

and help determine underlying themes.
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Chapter 4

A Unified Approach to Improving Alerting System

Performance

As mentioned in the previous two chapters, the performance of an alerting system

is often measured in terms of probabilities and prediction outcomes. For example, the

false alarm and missed detection rates are indications of a system's ability to correctly

determine the likelihood of an undesirable event (e.g. violating minimum separation). In

this sense, the entire alerting problem can be perceived as a prediction problem in the

presence of uncertainties. To improve performance is thus to increase the prediction

accuracy of the alerting system. One way of achieving this is to reduce errors in the

trajectory model. Another way is to make the future trajectory more easily predictable.

4.1 Errors in the Trajectory Model

4.1.1 Working Model (W) vs. "Truth" Model (T)

To be able to estimate P(C) for either the nominal (N) or avoidance (A)

trajectories, it is necessary for the alerting system logic to develop an approximate

working trajectory model, W, for each aircraft as part of the estimation process. The

detection of conflict is basically determined by where the modeling scheme predicts the

position of the aircraft to be later in time. The importance of an appropriate model

should not be understated since it is the defining source of the trajectory prediction.

Errors in the model used by the alerting logic can increase the chances of missed

detection of hazard and also add to false a[_aym_s. The choice of modeling schemes is
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alreadycomplicatedby theexistenceof uncertaintiesin theaircraft trajectoriesas

explainedearlier. Commonapproachesfor modelingwerediscussedin Section3.3.3,but

thefollowing will explain in furtherdetail the impactof themodelsonconflict

prediction.

Let T bedefinedastheprobabilisticstatetrajectoryin thestate-spaceof the

alertingsystem.Thus,for agiven statevector, x(t), thefuturestatetrajectorycanbe

describedby T. In this thesis,T will be referredto asthe"truth" model and represents

the best estimate of the uncertainties in the future states of the conflict situation. As

shown in the example back in Figure 2-9, the state trajectory can have multiple outcomes

from a single initial state, x(t). Theunpredictability of a trajectory can be caused by

many factors that are random such as wind, autopilot behavior, human actions, etc. and is

thus a stochastic process. T can then be thought of as the trajectory defining the true

probability of conflict, PT(C), at any given time.

Now let W represent the working trajectory model that is actually being utilized

by the alerting system to estimate the future states of the system. The two models, W and

T, are depicted in Figure 4.1. It goes without saying that ideally one would like W to be

an exact copy of the true probabilistic trajectory, T, for all time t; thus, the probability of

conflict predicted from the working model, Pw(C), would be the same as the true Pa-(C).

Unfortunately, uncertainties in the true trajectory make this all but unlikely except for a

short time step into the future. In addition, as shown in Figure 2-8, multiple encounter

situations with the same apparent state can lead to additional uncertainties in W.

Note that for now, the subscript T will be used to explicitly differentiate the true

conflict probability Px(C) as opposed to that obtained from the working model W.

However, in general and for subsequent chapters, it is impossible to actually utilize
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PT(C) since the true trajectory distribution is unknown. The alerting decision is based on

W, but the actual situation is really dependent on T. In the discussions on the SOC

curves from the previous chapters, it was assumed the true stochastic trajectory, T, was

known and being used in the plots.

Figure 4-1: Working Trajectory Model (W) and "Truth" Model (T)

The error in the model, W, can be a result of many factors. It may be due to the

limited amount of information available, oversimplification of the true trajectory, T, or

even mistaken assumptions about the flight path. Sufficient and accurate state

information about each aircraft is vital in the modeling process, but sometimes it is not

available due to constraints on the equipment and technology currently available. For

example, the Traffic Alert and Collision and Avoidance System (TCAS) is unable to

obtain accurate relative bearing estimates of the surrounding aircraft because of

limitations in the onboard equipment. It must rely on relative range and altitude data to

estimate the conflict situation. Closure rates in the horizontaland vertical dimensions are

estimated from derivative calculations and are used in the alerting decision. However,

the relative bearing, which can be used to estimate the closest miss distance assuming a
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straightline projection,cannot beObtainedwith sufficientaccuracyusinganalytical

means[Burgesset al., 1994].

As mentionedearlier,thesinglepathandworstcasepropagationmethodsare

commonapproachestakenin modelingthetrajectories.Both canbeconsidered

simplificationsof thetruepathof theaircraft. In thecaseof the singlepathtrajectory

method,W wouldbenarrowedto a singletrackwith probability 1.0. The aircraftwould

notbepredictedto veeroff thispath. In theworstcasemethod,W would encompassthe

realmof all likely pathswith theaddendumthat anypossibilityof aconflict

{ Pw(C) > 0.0 } would be considered a violation. The single path and worst case

approaches represent the two extremes of the modeling spectrum. Both have advantages

and disadvantages which can depend on the situation. The single path approach may be

preferred if the true trajectory is known with a high degree of confidence. The worst case

approach lends itself to dealing with many of the uncertainties by setting a more sensitive

alerting criteria.

However, whenever the working model W does not correctly correspond to the

"truth" model, T, errors in the prediction of conflict will ultimately result. The more

accurate the working model, the more likely Pw(C) will approach Px (C), and the better

the prediction of conflict. Ultimately, this will influence the potential performance of any

conflict alerting system.

4.1.2 Errors and Uncertainties in the Trajectory Model

To obtain a better understanding of the effects from modeling deficiencies, an

examination can be made by considering the position distributions of the aircraft from

both the "truth" and working modeled trajectories at a given time t into the future. A

representative depiction of these position distributions is shown in Figure 4-2. The area
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of T intersectingthehazard,H, is the true probability of conflict PT(C [ t) at the particular

time, t. The value predicted by the working model is Pw (C I t). In general, however, the

values need to be computed along the entire path of the probabilistic trajectory and not at

just one particular instant in time.

pT(c/t)

Figure 4-2: Prediction of Conflict at Time t

The effectiveness of the working model, W, depends on its ability to accurately

represent the "truth" trajectory, T, and predict the value of the true conflict probability,

Pv(CI t). There are several ways in which the model will differ from the true

distribution. In the same context as in the previous figure, Figure 4-3 shows the position

predicted by the model to be in error by a general displacement from the true

probabilistic distribution at time t. Because of uncertainties, it is natural to expect

displacement error especially if the prediction time is long. Also, information such as a

heading change, if not included in the model, will show up as a displacement. Most

likely, the causes are a result of insufficient information either from sensor equipment or

misunderstanding of the pilot's expected course of action.
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Figure 4-3: General Displacement Error in Working Model

Displacements can easily result in either a missed detection of a true hazard

(Figure 4-4a) or a false indication of hazard (Figure 4-4b). Certainly, the ability to detect

all forthcoming conflicts is of paramount importance. An alerting system would be

basically useless otherwise. The effects of false alarms on the alerting paradigm was

mentioned earlier in Chapters 2 and 3.

PT(C/t)

a) Missed Detection by Model

Pw(O : 0, P_(C) > o

b) False Detection by Model

Pw(C) > o, P_(C) = o

Figure 4-4: Incorrect Predictions from Displacement Error
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Generaldisplacementerrorsaremorelikely to occurwhenasinglepath

projectionmethodis beingused.The reasonlies in thefact that theapproachdoesnot

allow for variability in thepredictedpath. Evensmall inaccuraciesin sensorreadings

(e.g.velocity, bearing)or wind variationscanrendersignificantdisplacementerrorson

theorderof amile in just 10minutes.Generally,theapproachusedto compensatefor

theuncertaintiesandvariationsis to definea safetybuffer zoneaboutthepredicted

positionsalongthepath. Theneteffect is muchlike asingletubulartrajectoryof

constantwidth asshownin Figure4-5. A conflict would thenbedeclaredif thehazardis

predictedto passwithin thespecifieddistancefrom themodeledpath. Themainideais

containsomeor mostof T with thebuffer regionto compensatefor theuncertaintiesof

theftiture path.

Increased

Conflict

Predicted

Figure 4-5: Safety Buffer Solution to Single Path Projection Approach

Differences in the shape and size of the distributions can also be expected due to

uncertainties and incorrect modeling assumptions. In Figure 4-6, the working model's

position distribution is shown much smaller than the true distribution, indicating not

enough of the uncertainties were accounted for. Again, this situation would appear to
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occuroften in thesinglepathpropagationapproach.This typeof occurrencecaneasily

resultin misseddetectionof thetruehazardunlesstheconflict is very nearbyandwith

highprobabilityof conflict.

p (c/t)

Figure 4-6: Modeled Distribution Too Small

Missed Detection by Model { Pw(C) = 0, PT (C) > 0 }

In a similar fashion, the modeled distribution could end up being much larger than

the true one 0_igure 4-7) leading to excessive predictions of conflict when none exists - a

condition leading to needless nuisance alarms. The worst case conservative approach

discussed earlier is a possible example of this happening.

W

p (c/t)

Figure 4-7: Modeled Distribution Too Large

False Alarm {Pw(C) > 0, PT(C) = 0}
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Errorsfrom the workingmodeljust addto thedifficulty alreadypresentfrom the

uncertaintieswithin the"truth" model,T, andwill only leadto higherratesof erroneous

alertsor misseddetectionof conflict. Theperformanceof thetrajectorymodelcanbe

definedsimplyasthedifferencebetweenits predictedprobabilityof conflict andthetrue

probabilityof conflict.

= ]ew(C)-P,(c)l (4.1)

In actual application, the working trajectory model is what is used in the conflict

analysis. Whenever AP(C) _: 0, additional errors in the hazard assessment are incurred

and only increase the difficulty in deciding the appropriate action to take. Ideally, one

would prefer the working model to match the uncertainties in T, but usually this will not

be the case. Methods which only set Pw(C) to be either 0 or 1 will cause some important

information to be lost in the analysis, especially effects of the inherent uncertainties in the

future trajectory on alerting performance { P(FA) and P(SA)}. The significance of

calculating these parameters is not only to have the ability to estimate the performance of

the alerting design, but also to examine the benefits from reducing the various levels of

uncertainty in the trajectory prediction.

4.1.3 Effects of Modeling Errors on Performance Estimates

The effect of errors in the model can severely hamper and alter the design and

analysis of the alerting system. A poor model does not represent the true situation at

hand and can lead to uninformed decisions based on inaccurate data. It becomes much

more difficult to fully assess the current conflict state and set an appropriate threshold.

The SOC curve would be deceiving and may show the conflict situation looking better or

worse than it really is. Without decent trajectory models, setting good alerting thresholds

then becomes an achievement merely by chance.
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In caseswhereuncertaintyin W is modeledassmallerthanin T, the faulty SOC

curvewill showupasbeingbetter(movingmoretowardthecomers). Recallthatwhen

thereis nouncertainty,theoperatingpoint mustlie in oneof the4 comers. Thisgivesa

falsesenseof securitythat doesnotreallyexist. Thesinglepathmodelingapproachhas

basicallythis neteffect. It assumesvery little, if any,variability in its pathprediction;

thusit is very forthright in its estimateof conflicts - it eitherexistsor it doesnot (binary).

It is ameresimplification of theproblemthat if thatsituation(i.e.nouncertaintyin the

trajectory)wastruly reflectedin theconflict, thenalertingwouldbegreatlysimplified.

In analertingsystem,thethresholdis basedon theworkingmodel,W, being

employedby thelogic, but theactualperformanceis dueto theprobabilistictrajectory,T.

Thus,two SOCcurvesreallyexist - onebasedon thedesignedtradeoff (dueto W) and

theotheron thetruetradeoff(actualT). A point on theW curvemapsto somepoint on

theT curveasshownby thedashedline in Figure4-8 (themappingneednotbeone-to-

one,however). An inaccuratemodelmaytheninduceanalertwith resultsnot expected

by theanalysisusingthemodeledW trajectory. In theparticularcaseof Figure4-8, the

actualperformanceof thesystemwill haveahigherfalsealarmrateandlower successful

alertratethantheintendeddesign.

P(SA)

0

0 P (FA) i. 0

Figure 4-8: Effect of Underestimating Uncertainty
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Overestimatingtheuncertaintyof the"truth" trajectory,T, canalsoleadto

problems.Whentheuncertaintyin W is takento belargerthanin T, theSOCanalysis

will havetheappearanceof beingin amoredifficult conflict situationthanit really is.

Whenmoreuncertaintyexists,thecurvewill tendmoretowardsthediagonalline from

thelower leftcorner to theupperright (Figure 4-9). The effect may cause one to alert

earlier than necessary believing successful avoidance would be jeopardized otherwise;

when in fact, it would be the false alert rate that is really compromised (alerting too early

increases risk of false alarms).

1.0

P(SA)

0 P (FA) i. 0

Figure 4-9: Effect of Overestimating Uncertainty

•4.2 (W = T) Reducing Trajectory Modeling Errors (Increase Accuracy of Model)

The general effects of modeling errors (which were just explained) can lead to

misrepresentation of the actual hazard at hand. In order to effectively make well

informed alerting decisions, one must have an appropriate assessment of the currcm

threat situation. The objective is to increase the prediction accuracy of the trajectory

model, W, used by the alerting logic. This is achieved by increasing the degree to which

W=T.
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It is extremely important to keep_in mind that the "truth" model of the trajectory,

T, is still considered a stochastic process with a random outcome for a single initial

realization. If this were not true, then T would not have uncertainties, and the above

relation would imply that an ideal alerting system could almost always be designed (no

false alarms, always safe avoidance). The statement W = T simply denotes that the two

trajectory distributions should exhibit the same parametric characteristics of a random

process such as the mean, standard deviation, and dispersion form. It indicates the desire

to properly match the alerting logic's estimate of a hazard to the actual, and allows the

accurate assessment of the true probability of conflict, Px(C), and thus P(FA) and

P(SA) as well. The SOC method requires a curve to match as best it can to the true

conflict situation, else the curve would be wrong and misguided as is shown in Figure 4-

10. This is true of any performance analysis method.

The natural randomness in the problem still has to be dealt with, however. For

any single event, such as an alert, the outcome is still probabilistic even if W = T. Take,

for example, a flip of an unbiased coin. Even if the model of the outcome is perfect (50%

chance of heads, 50% chance of tails), for any given toss, there is a 50% chance of being

wrong - akin to a P(FA) = 0.50. For any given alert, the outcome of succeeding or

giving a false alarm is still probabilistic (the trajectories are random processes with an

associated variance). This is the notion of inherent uncertainties and will be dealt with in

the next section.
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Figure 4-10: SOC Comparison

For now, the concentration will remain on increasing the trajectory modeling

accuracy, W = T. In Figure 4-11, a schematic for two approaches to this theme is given:

driving W toward T, and driving T toward W.

Probabilistic Trajectory Model • Conformance Boundaries

Accurate Information of State • Limit Operation

Trajectory

Continuous Update of W

Figure 4-11: Approaches to Reducing Modeling Errors
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4.2.1 (W --_ T) Drive W Toward T - Improve Trajectory Modeling

4.2.1.1 Utilize a Probabilistic Trajectory Model

The notion that W should equal T would imply that W should also exhibit

characteristics of uncertainties, thus leading to a probabilistic modeling approach for the

dynamic model of the alerting system. It is just one way of improving the accuracy of the

conflict prediction process. This is the direct approach of dealing with the uncertainties -

by independent modeling of the various sources and causes, quantitatively and explicitly.

This includes uncertainties in flight path due to human factors and possible blunders.

The single path and worst case approaches, in general, are more likely to give

inaccurate predictions of conflict (modeling errors), and must therefore account for the

inaccuracies with other methods of instilling uncertainties into the analysis as explained

in Chapter 3 (e.g. iterative modification of the threshold parameters and criteria). The

goal of using a probabilistic trajectory for W is thus to directly reduce the chance of

modeling errors in the dynamic modeling phase of Figure 3-2.

4.2.1.2 Utilize Sufficient and Accurate Information of the State Trajectory

In developing a probabilistic trajectory model, W, one would prefer to have it

coincide as much as possible with the random characteristics of the true trajectory, T. In

order to do so and thus reduce the amount of error in the conflict prediction, sufficient

and accurate information regarding T is necessary. In other words, it would be preferable

to have more and better prediction information, assuming it is not in error. Else, the

overreliance on a false assumption of the trajectory model can lead to problems.

Take for example, the current velocity vector of an aircraft. Using it to predict the

position 5 minutes in advance would lead to a large displacement error if the aircraft was
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currently bankedin a turn. Now addingthebankangleto thepredictionwould improve

matterssome,butonly for ashortextrapolationtime becauseit isunlikely theplane

wouldcontinueto bankin full circles. Theadditionof acommandedheadingsetby the

pilot (intent)wouldbeveryhelpfulin thiscase.

Thoughit is highly unlikely thatall theparametricestimatesof T areavailableto

analertingsystemfor modelingW, a sufficientamountof informationshouldbeutilized

in orderto give areasonableestimateof thehazardsituation. Sufficient is subjectiveand

reallydependson thegoalof thesystemandthespecificsituationat hand- asit is with

anytypeof modelingscheme.

Theamountandtypeof aircraftstateinformationnecessaryfor thetrajectory

modelW is somewhatarbitrary. Pastconflict avoidancemethods(seeKucharandYang,

1997)haveshowntheuseof avarietyof different combinationsof statevariables.The

only statevariableusuallyrequiredis with regardto positionaldatasincetheconflict

criteriaarebasedonseparationstandards.All otherstatevariableswould certainlyhelp

improvethepredictionof thefuturetrajectoryif utilizedappropriately.However,

sometimestheadditionalinformationmaynotbenecessaryastheimpactonperformance

mightonly beminimal. It reallydependson thesituationin which thealertingsystemis

operating.

Takethetwo examplesshownin Figure4-12. Figure4-12ashowstwo aircraft in

asimultaneousparallelapproach,andFigure4-12bhastwo aircraftconvergingonan

intersectingwaypointalongtwo separateairwaysangledat acertain fl degrees apart. As

long as the alerting system is designed and limited to a very specific type of encounter

situation, it is possible to have a reduced number of variables to define the working

model W. This is because of the implicit information already embedded within the
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specificscenario- therelativebearingin thecaseof Figure4-12. It is conceivablethata

dynamicmodelmaynotevenbenecessaryastherelativepositionbetweenaircraftmay

besufficientenoughto differentiatethreatandnon-threatsituations.This is analogousto

mappingor regressionmodelingwherethenumberof variablesrequiredto sufficiently

modelaproblemincreaseswith thecomplexityandtheuncertaintyof theenvironment.

If thealertingsystemis neededto handlemanytypesof possibleencounters(suchas

aircraftcomingfrom all directions),thenit becomesmorenecessaryto be ableto

differentiatebetweenthesituationsandmoredefining variablesarerequired.A more

thoroughdiscussionon this topicwill begivenin Chapter5.

A

+

/

1

/

\

a) Parallel Approach b) Intersecting Airways at Waypoint

Figure 4-12: Example Encounter Situations
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In general,themoresensorsandinformationavailableabouttheaircraftand

hazard(suchasfrom data-link), thebettertheability of thesystemlogic to matchW to

T. As previouslydiscussed,the lackof certaininformationhasbeenarecurrentproblem

in severalaviationrelatedalertingsystemssuchastheGPWSandTCAS. However,

cautionshouldbeusedin assuringtheinformationis utilizedproperly soasto truly

matchW = T. Elsefalserelianceon thedatawill only leadto misguideddecisions.The

singlepathapproachto modeling,for example,usuallyassumesaconstantvelocity even

in verticalmaneuvers,yet thevelocitieshavebeenobservedto fluctuatesignificantly

especiallyin climbs anddescents.Also,projectingaverticalmaneuverovera long

periodof time is usuallymeaninglesssincetheaircraftwouldbeexpectedto leveloff

sooneror later. This leadsto thefollowing sub-sectionof utilizing intent informationto

further improvepredictionaccuracy.

Theuseof additionalintent information has been a recent topic in conflict

avoidance lately, though an exact definition as to its meaning has not been thoroughly

presented. For this thesis, intent will be taken as any information that will support the

prediction accuracy of future aircraft positional states. Commanded heading, level-off

altitude, or next waypoint could be considered intent information, though they must

accurately depict the current situation in order to satisfy W ---) T.

Intent can also have uncertainties and must be adequately accounted for or else its

limitations must somehow be expressed in the analysis. Take, for example, an aircraft

(B) with the expected intention of leveling off 1000 ft above another aircraft (A) as.

shown in Figure 4-13. If aircraft B only has a 75% chance of following through with the

level-off, the alerting system must acknowledge this information and decide when to alert

to supply sufficient clearance to avoid the hazard and still hold false alarms at bay.
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Figure 4-I3: Uncertainty in Intent Information

Another example is the parallel approach scenario where aircraft are landing

simultaneously on two different but closely spaced runways. The intent is obvious - fly

straight, at a low rate of descent, down to the respective runway. However, if this intent

were 100% foolproof, then aircraft could be allowed to be spaced extremely close

laterally (subject to wake vortex constraints) if sufficient guidance and sensor systems

were onboard (i.e. use of Differential GPS). The problem occurs when human pilots

blunder or when weather, wind, or equipment failure become an issue. Spaced too close,

the parallel runways may not provide the aircraft with adequate time to avoid a conflict if

the intent is not followed. Overconfidence in the use of intent information can lead to

trouble if it does not accurately depict the true uncertainty of the trajectory, T.

4.2.1.3 Update the Working Trajectory Model

In order to consistently obtain accurate predictions of the current threat situation,

the dynamic model, W, should ideally be continuously adjusted to match changing

conditions. It should really be adaptive to different state or intent information that

becomes available. Recall that the TCAS Tau Criteria thresholds actually change
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dependinguponaltitude,climbing ordescending,anddirectionof flight (seeFigure3-3).

Though these values were designed using hand-picked simulation scenarios, they prove

the necessity of adjusting for varying flight conditions.

Take an example where an aircraft begins to enter airspace where inclement

weather is abundant. It becomes more likely now that the trajectory of the aircraft is

more variable and may change course to avoid certain areas. The dynamic working

model, W, should then allow for higher possibilities of aircraft varying off their present

course. It should be updated accordingly so that W matches T as much as possible to

reduce prediction errors. Assuming the aircraft will maintain a current heading, steady

level flight when that behavior is unlikely will only lead to additional modeling errors.

At the other extreme, over-modeling of uncertainties can also lead to incorrect

predictions.

It is likely that the intent of an aircraft will change many times over the course of

a flight. To assure proper conflict detection, the dynamic model should be coupled to the

updated information and change accordingly. If possible, it would be best if a pre-check

of the new intent trajectory was examined for immediate conflicts before allowing the

intent to be carried out. However, this might be out of the scope of an alerting probe

concept and more toward a centralized Air Traffic Management effort.

4.2.2 (T --+ W) Drive T Toward W

4.2.2.I Utilize Conformance Boundaries

One way to improve algorithm prediction accuracy is to enforce conformance of

the aircraft trajectory through the use of secondary alerts. The principle is to alert not

because of a conflict, per se, but because the aircraft is deviating from the model that
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would allow the conflict logic to more easily predict the outcome of a future conflict.

This method can be especially useful when aircraft are closely spaced together and

expected to fly a certain path or pattern. It makes it much easier for the conflict

avoidance algorithm to work as expected with less error. A very simple working model,

W, could be utilized (e.g. a single path projection) and the associated aircraft could be

forced to conform to a specific route. However, it can be somewhat constraining to the

flight of the aircraft since it is bound to restrictions on its path.

An example of conformance monitoring is shown in Figure 4-14 where an aircraft

is expected to follow a specific path marked by conformance bounds. The boundaries

usually provide some leeway for fluctuations from both environment, aircraft, and human

variations. Both horizontal and vertical margins may be delineated so as to contain the

path of the aircraft in 3-D. With future advancements, 4-D conformance monitoring

(adding time) may be possible.

If the boundaries are exceeded by the aircraft, then an alert can be given to warn

the pilot to return back on track. It is also possible to have a new path recomputed once

the aircraft deviates from the original routing.

The usefulness and simplicity of the conformance approach is marked by the

number of prototype conflict systems which utilize this method. Examples include the

Center-TRACON Automation System (CTAS) [Isaacson and Erzberger, 1997],

EUROCONTROL's Medium Term Conflict Detection (MTCD) system [Vink et al.,

1997], the User Request Evaluation Tool (URET) [Wanke, 1997; Brudnicki et al., 1977],

and the No Transgression Zone (NTZ) for parallel runway landings [Shank and Hollister,

1994; Carpenter, 1996]. Even motor vehicles on the inter-state highway system utilize a

form of conformance check with the lane bumps indicating deviation outside of the

82



currentlane. Noticethat aworstcaseapproachto highwaydesignwouldprobably

requireindividual lanesto beoverahundredfeetin width, yet theyareusuallyonly

about12feetwide.

w

I anv i ew

Profile View

Figure 4-14: Example of Conformance Boundaries

To some extent, the current ATC system with its rigid airway structure can be

thought of as conformance monitoring by the human controllers. Aircraft are maintained

in their correct flight paths and place heavy trust in the controller to alert and clear them

out of danger.
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4.2.2.2 Limit Operation

Sometimes there are instances in which an alerting system may not work well

and the thus the operation of the system will be limited to use for certain types of

encounters only. For example, the TCAS algorithm is intended for near term conflicts on

the order of less than 1 minute. Extending the original algorithm to long term encounters

would likely incur deteriorating performance as shown back in the simple example of

Figure 3-4. Without accurate bearing information, the TCAS logic simply cannot obtain

satisfactory conflict prediction results in long term encounter situations [Burgess et al.,

1994]. Thus the alerting system is limited to those operations in which it is capable of

handling or predicting.

In another example, certain flight procedures are sometimes tailored to meet the

limitations of the alerting system so that it may obtain adequate performance (e.g.

minimize false alarms). For instance, in a situation often referred to as the "Seattle

Encounter" [Drumm, 1996], an intruderaircraft is descending toward a TCAS equipped

aircraft but levels off at an altitude above it. TCAS initially predicts a collision and

issues an alert for the TCAS aircraft to climb. However, the intruder levels off above the

TCAS aircraft resulting in a false alarm (the alert was not necessary). Not only has a

false alarm occurred, but the situation can actually induce a hazard with TCAS aircraft

climbing into the intruder. Because of the tendency to produce false alarms and a

possible hazard situation, it has been recommended that aircraft slow their rates of

descent when approaching their final altitude [Mellone and Frank, 1993]. The effect is a

modification of T in order for the alerting logic to correctly anticipate (or predict) the

leveling off of the intruding aircraft.
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4.3 Reducing Inherent Uncertainties (Reduce Uncertainty in Future Trajectory)

Once the working dynamic model, W, is presumed to be a good representation of

the "truth" trajectory, T, the decision to alert becomes a tradeoff between false alarms

and successful avoidance. Assume the SOC plot of the current alerting design Iooks Iike

that shown in Figure 4-15a. The curve designates the performance expected for various

possible alerting points along a particular nominal path.

1.0 1.0

P(SA)

0

0 P(FA) 1.0

P(SA)

0

0 P(FA) 1.0

a) High Uncertainties b) Reduced Uncertainties

Figure 4-15: Improved Performance Depicted in SOC Plot

The plot in Figure 4-15a shows a system that would not have great performance

because of the difficulty in setting a threshold without sacrificing either P(FA) or

P(SA). The effect is likely due to the amount of uncertainty in the true trajectories of

the nominal (N) and/or avoidance (A) paths. It is an inherent characteristic of this

alerting system given the random processes involved. This will be termed the inherent

uncertainty of the system. In Figure 4-15b, there is less inherent uncertainty in the

system.

85



To beableto improvetheperformanceof thissystem,theuncertaintiesin the

trajectoriesmustbereducedsoasto increasethepredictionoutcomefor asingleeventin

arandomprocessenvironment.The situationis analogousto reducingthevariance(o"2)

in aprediction. Takethecoin flip exampleagain. Inherentuncertaintyis highestwith an

unbiasedcoin (thevariance0-z = p(1 - p) is maximum at p = 0.5). If the coin was

biased toward 90% chance of heads and only 10% chance of tails, then the chances of

predicting a head or tail with a single flip would be much better (variance is lower). The

inherent uncertainty of this biased coin would be less than the unbiased one. The effect is

basically to make the outcome more deterministic.

In terms of the SOC plot, reducing inherent uncertainty would drive the points to

the outer perimeters making it easier to determine more suitable threshold locations. In

the limit of no uncertainties, all possible threshold locations must exist at one of the

corner positions as explained back in Chapter 2. For example, Figure 4-16 shows two

aircraft on a nominal direct collision course in a 90 ° encounter situation. The SOC plot

shows the deviation of the curve from the ideal position as the bearing accuracy of both

aircraft is varied from 0- = 0 ° to 0- = 5" (normal distribution) in 1 ° increments. This

simulation is based on a point-mass model of the aircraft flying along a straight path with

the different random heading errors. The standard 5 nautical mile separation was used as

the definition of conflict in this example, and the avoidance maneuver was a 20 ° turn

after 10 seconds.
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Figure 4-16: Example of Increasing Uncertainty (Heading) on SOC Curve

Inherent uncertainty is a function of the distribution and size of the "truth"

traiectory relative to the hazard at the time of the prediction. The "truth" model can refer

to either the nominal (N) or avoidance (A) paths. Analogous to the coin flip example,

high uncertainty in the future path makes it more difficult to accurately predict the

outcome for any single event. This can be seen in Figures 4-15 and 4-16 where higher
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levels of uncertainty make it more difficult to determine whether or not a conflict will

occur. In the limit of no uncertainty, the conclusion is deterministic and binomial.

In the following sections, various ways of reducing the inherent uncertainty and

thus improving alerting performance are given. It should be realized that these methods

are not newly proposed ideas, but simply brought together to show that they all really fall

under the category of reducing the inherent uncertainty of the underlying random process.

The purpose, of course, is to increase the chances of correctly predicting the outcome of a

conflict and the ability of avoiding it (i.e. to make results more deterministic).

Much of the effort is in reducing the uncertainty in the future track. Sensor

inaccuracies, autopilot control behavior, weather changes, and variable winds are all

contributing factors. However, much of the uncertainty involving the future path of an

aircraft is a result of the human pilot in control and the decisions he/she makes; basically,

not knowing what the pilot is going to do. Because of the high variability between

humans, it is unlikely the course of action followed by each pilot would be the same in

any given situation. Several methods are possible to help decrease these variabilities and

are discussed below.

4.3.1 Restrict Flight Path

The position of an aircraft traveling at 450 knots with the ability to bank 30

degrees would, in just 6 minutes, encompass a nearly circular region of 45 nautical mile

radius about its current position [Andrews and Hollister, 1997]. With a possible climb or

descent rate of 2000 ft/min, the volume engulfed would reach 12,000 feet above and

below the aircraft. Thus, in order to reduce the number of possible trajectories, some

form of restrictions need to be placed on the flight path. Constraints on the trajectory

would effectively narrow the region of uncertainty (see Figure 3-5b) and produce a more
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definitive outcomeonwhetherornot aconflict wouldoccur. In otherwords, P(C), as

well as P(FA), would shift more toward 1 or 0.

This appears to be the simplest method and is currently implemented for enroute

traffic today. Aircraft follow along in pre-assigned airways and at defined altitudes

making it easier for pilots and controllers to predict potential conflicts. The system is not

without shortcomings however. A tremendous amount of airspace is left under-utilized

leaving many to believe a more efficient means of operation is necessary to handle the

current congestion today and the increased air traffic demand in the future.

There is a movement under way to relax the current system of rigid airways and

in-trail spacings to increase flexibility for more efficient operation. This notion of a Free

Flight environment with less restrictions in course adjustments has been a source of much

research and discussion lately [RTCA, 1995; Phillips, 1996]. Of course, the increase in

flexibility will nonetheless increase the potential for more difficult conflict encounters

and added uncertainty. The final report on Free Flight implementation by the Radio

Technical Committee on Aeronautics [RTCA, 1995] suggests conformance to maneuver

limits as an interim solution. For example, aircraft might be restricted to a 20 degree

heading change within a 15 minute time period. Constraints placed on such maneuvers

have been shown to significantly reduce the rate of conflict encounters [Andrews and

Hollister, 1997].

4.3.2 Establish Protocol (Training, Rules of the Road, Convention)

The use of established rules-of-the-road with training can help increase the

likelihood that pilots will follow specific patterns of flight behavior. The uncertainty in a

pilot's action, and ultimately the aircraft's flight path, can thus be reduced. For example,

rules-of-the-road regarding the right-of-way (depending on relative aircraft positioning)
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mayhelpdeterminetheexpectedtrajectorieseachaircraftmayfly. The importanceof

takinghumansinto accountasa largecontributorof uncertaintiescannotbe overlooked.

A studyof commercialjet accidentsresultingin acompletehull losshasplacedtheflight

crewastheprimarycausein 70%of theaccidentsfrom t988-1997[Boeing, 1998].

Also, requiringcommunicationbetweenpilots or thecontrollerprior to making

anycoursecorrectionwould inevitably helpreduceuncertaintyin theexpectedflight

trajectory. This hasthenotionof intentinformationbut is explicitly forcing thepilots to

decideandcommunicateimmediatechangesin intentbeforeallowing the actionto be

taken. Theideacertainlyhasmeritandsomehaveevenproposedanew ATM

environmentwhereprinciplednegotiationbetweenpilots andcontrollersis thebasisof an

establishedprotocol [WangermannandStengel,1994]. Theexplicit communicationof

aircraft intentis a possibilityfor reducingthesetof likely trajectoriesonecanexpect

whendecidingon potentialconflict situations.

4.3.3 Introduce Better Equipment

Even with all the restrictions placed on the pilot to maintain a specific course,

inevitably there will still be some random uncertainties involved. As mentioned

previously, sensor inaccuracies, variations in wind, autopilot capabilities, and inherent

aircraft dynamics all play a role in introducing variability in the aircraft trajectory.

Empirical data from observing current aircraft maintaining a given track have shown

deviation perpendicular to the nominal track (cross-track) that is approximately Gaussian

on the order of 1 nautical mile standard deviation [Paielli and Erzberger, 1997].

Fluctuation in speed, due primarily to wind effects, was also observed to be upwards of

15 knots (one standard deviation) normally distributed [Paielli and Erzberger, 1997;

Wanke, 1997]. Current technological advances in sensors (most notably the Global
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PositioningSystem,GPS)andin computerhardwareandsoftwaremaybeableto provide

improvedaccuracyon futureair transports.Futuredevelopmentsmayalsoallow for 4-D

pathfollowing capabilities.

Theintroductionof highly automatedequipmentonboardtheaircraft is not

without its critics, however,especiallyif it involvesautomationin thecockpit andnew

allocationof piloting tasks.Theadditionof newtechnologymaylikely altertheway

aircraftareflown andmayintroducenewmodesof humanerror. A morethorough

examinationof theunderlyinghuman-machineprocesswould thusbenecessaryandis an

areaof continuingresearch.

4.3.4 Delay Alert (Minimize Size of T at Alert Time)

Though reducing the uncertainty in the trajectory would be ideal, sometimes it is

not always possible. It may be impossible to alter the operating environment or add

sophisticated instruments and sensors to reduce the variability in the flight path. To the

alerting system designer, the only remaining alternative for decreasing the unnecessary

alert rate is to delay the alert as long as possible. In effect, the delay is used to wait for a

more definitive determination of a conflict before proceeding to warn the pilot and/or

controller. This has the effect of minimizing the uncertainty in the trajectory at the time

of the alert (the position distribution of T is smaller). Usually, the uncertainty in the

position of an aircraft will grow with time (the exception might be 4-D trajectories). This

effect is depicted in Figure 4-17. The shorter the prediction time, the smaller the

uncertainty. Examination of Equation 2.2 shows that as P(C) tends towards 1, P(FA)

will approach 0. Delaying the alert also has economic and reduced workload benefits as

well, since nuisance alerts incur costs from maneuvering unnecessarily.
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Figure 4-17: Increase in Uncertainty Due to Prediction Time

Of course there is a tradeoff to all this; namely that the delayed alert may be

placing the aircraft at a higher risk of danger. The pilots would have less time and

options to undertake avoidance action when the alert is given. It may also be possible

that the human pilot will disagree with the delayed timing of the alert, thus resulting in

mistrust of the system as well [Pritchett, 1999].

4.4 Investigate Other Avoidance Maneuvers

If the performance of an alerting system still proves insufficient to meet design

goals given the methods discussed above, then another option is to utilize a different

conflict resolution. The determination of P(SA) discussed in the last chapter is specific

to a given avoidance trajectory, A, which, as a reminder, still includes uncertainties and is

a stochastic process. Various horizontal or vertical maneuvers could be tried including

the addition of speed control or cooperative maneuvering between aircraft, or a more

severe or drastic maneuver could be employed. Figure 4-18 shows how a larger climb

rate could be used to increase the chances of avoiding another aircraft descending into a

conflict situation.
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a) Original Climb Maneuver

b) Increase Climb Rate

Figure 4-18: Utilizing a Different Maneuver to Avoid Hazard

However because of human involvement, there may be higher uncertainties

associated with more complex maneuvers. The result may be worse performance than

expected because of larger uncertainties in the avoidance trajectory, A. The pilot may
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alsobe lesswilling to performcomplicatedor severemaneuversif for somereason

he/shedid not deemthethreatto bereal. In anycase,it is alwaysgoodto haveviable,

multiple avoidanceoptionsavailableto thepilot duringemergencysituationsfor added

safety.

4.5 Design Issues

Reducing modeling errors and reducing inherent uncertainties results in one effect

- it increases the ability to predict the outcome of a single stochastic event. The idea is, in

effect, making the process more deterministic and thus increasing the performance of the

alerting design. Any of the methods discussed above can be used individually or in

combination.

To improve performance, one can either reduce the uncertainties in T, and then

design an alerting system to match (reduce T and W _ T), or one can reduce the

uncertainties in W and then enforce trajectory conformance (reduce W and T --_ W).

Either way, the optimal performance (in terms of conflict alerting) will occur when the

true trajectory is deterministic (no uncertainty, 4-D path). The current ATM environment

with its heavily structured airway system and ATC monitoring appears to allow for easy

predictions of localized conflicts. There are restrictions and constraints in the system

which make the trajectory more deterministic in many cases.

The notion of Free Flight seems to be contrary to this idea, however. It is

probably unlikely that aircraft would be allowed to fly randomly about in the airspace.

As explained in this chapter, the larger the uncertainties in the trajectories, the more

difficult it is to determine and prevent possible conflicts. In Andrews and Hollister

[ 1997], an analytical model was used to determine that a significant increase in conflict

rate would result if aircraft maneuvering was left unconstrained. An increase in the
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numberof conflicts coupledwith adropin alertingperformancecouldonly leadto

problems.Theendresultwouldbealossof efficiency andincreasein workloadrather

thanthemoreefficient systemoriginally soughtafter.

Oneway aroundthis is to haveaircraftprovideandconfirm intent information

prior to any changes in the current intended course. The information must be accurate,

and some form of conformance monitoring would be helpful, else a modeling error would

occur in the alerting system. Of course, the system should check for possible conflicts

with the new path prior to allowing the changes to be made.

4.6 Summary

In this chapter, the problem of collision avoidance was recast as a problem of

prediction in the presence of uncertainties. The importance of trajectory modeling was

examined as a major source of errors in the outcome of conflict alerting. Without

uncertainties, the problem would be greatly simplified. The issue of improving

performance then becomes one of increasing prediction accuracy of the conflict situation

and its resolution.
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Chapter 5

A Probabilistic Perspective to the Alerting Design

Process

In previous chapters, the use of iterative, ad hoc adjustments was discussed as a

common method for setting threshold parameters. This approach to alerting design can

be thought of as an implicit method of dealing with uncertainties. It is implicit because,

as will be shown, the simulations are indirectly accounting for the uncertainties in the

encounter situation.

In this chapter, a probabilistic perspective to the alerting design process will be

examined and discussed in detail. It provides a different view to the current practice of

locating suitable thresholds based on iterative searches using trial and error. Probabilistic

elements will be shown to be embedded within the ad hoc approach, and thus the design

is, in essence, influenced by probabilistic or stochastic concepts which may at first not

appear to be present. A new, direct method will also be proposed to overcome some of

the limitations in the ad hoe approach.

5.1 A Probabilistic Perspective to the Ad Hoc Approach

During the operation of an alerting system a discrete decision is made to either

remain silent or issue an alert to warn the human operator. Typically, this decision is

based on metrics and whether or not they exceed critical values defining the alerting

thresholds. The manner in which these threshold parameters are set often follow an

iterative, ad hoc approach as explained back in Section 3.3.2.

97



To reiterate,Figure5-1diagramsthegeneral,iterativedesignprocessoftenseen

in settingalertingthresholdparameters.It usuallybeginswith someworkingdynamic

trajectorymodel (W) uponwhich thealertmetricsareusedto describetheencounter

situation. Themetricscanbe thoughtof asformingthestate-spaceof thealertingsystem.

In someinstances,thechoiceof metricsmaybeconstrainedby thetypeof information

available,in which casethechoiceof workingmodelsmayalsobe limited. For example,

limited sensorinformation in theTCAS systemallowstheuseof only rangeandrange

ratein theformulationof its horizontalalertingcriterion,andasinglepathworking

modelis used. Attemptsto includeinformationon theexpectedmissdistanceto improve

predictionaccuracycouldnot beachievedwith thecurrentequipmentbecauseof

difficulties in estimatingrelativebearinganglesbetweenaircraft [Burgesset al., 1994].
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Figure 5-h Current Design Process (Iterative Ad Hoc Approach)

In the common ad hoc approach, the thresholds would likely be initial settings

(from some combination of analysis and user expertise), but usually require some fine

tuning from test scenarios through simulation s as shown in Figure 5:1. As a reminder,
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X a representsthealert spaceof the threshold criteria (Section 2.2.3). The number of test

scenarios could run in the tens or hundreds of thousands, and would be used to evaluate

the performance {e.g. P(FA) and P(SA) } over the various simulation runs. For

example, changes to the original TCAS design were tested using over 1 million

hypothetical encounter geometries [Miller et al., 1994].

Adjustments and modifications to the thresholds or even the metric variables (the

feedback path in Figure 5-1) would then proceed until a satisfactory setting is achieved.

The values used to determine performance can themselves form a state-space which will

be denoted as Z. The symbology, Z R, in the figure is meant to represent the

performance requirements that need to be satisfied by the alerting system. For example,

Z R could be the region of performance state-space where P(FA) < 0.10 and

P(SA) > 0.95. If these requirements are not met, then the parameters in the threshold

are iteratively adjusted until satisfactory performance is achieved.

There are some very important insights when the process is portrayed in the

manner shown in Figure 5-1. The depiction looks quite similar to a neural network

scheme where the simulations define a "truth" model from which the thresholds are

adjusted to meet or optimize performance parameters.

From previous discussions, W is the working model being utilized by the alerting

logic to predict conflicts; and T represents the "truth" model of the trajectory which

determines the actual P(C). T is still a random process and can be considered as an

ensemble of individual trajectories. Thus, the simulations, being a collection of

scenarios, can be interpreted as representing T. Taken together, the simulation scenarios

are a probabilistic distribution (though discrete, it could be inferred to be a sample from a

continuous distribution). The scenarios represent the variability or uncertainty in the true
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aircraft trajectories.If thedistributionof thescenarioswerechanged,thethreshold

valueswould likely changealso.

Theperformancemeasures,asit turnsout, arecommonlyerror andsuccessrates

(suchasfalsealarms,successfulalerts,or misseddetections)asdescribedearlier. Notice

thatevenif thesimulationscenariosarechanged,thespecificationfor theminimumlevel

of performancewill likely remainunaltered.If a designmustachieve99% successwith

lessthan5% falsealerts,thenthoserequirementswouldnotchangewith different setsof

simulationruns. If theycannotbemet, thenchangesin themetricsor thresholdsettings

mustbeamendedto obtainsatisfactoryresultsagainstthechosenscenarios.Thusthe

alertingthresholdscanreally only beconsideredto be indirectmeasuresof thealerting

performance.In essence,thedesignprocedureis a mapping of the threshold metrics to

the performance measures.

For example, if the thresholds were based on range (r), range rate (/), and

predicted miss distance (m), then the probability of a false alarm and a successful alert

would be some function of these variables, P(FA) = f(r, i, m) and P(SA) = g(r, /, m),

respectively. The functions, fO and gO, would be specific to the scenarios used. In

general, P(FA) and P(SA) can be expressed as a mapping from the threshold settings,

X a , to the performance metrics as denoted in Equations 5.1 and 5.2.

where: X A

fO

gO

P(FA) = f(X a)

P(SA) = g(X a)

= threshold metric settings (alert space region)

= false alarm mapping function (scenario specific)

= successful alert mapping function (scenario specific)

(5.1)

(5.2)
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Thegoverningfunctions, fO and g(), are typically not explicitly expressed or

defined during the design process. Thus, it can become nearly impossible to predict the

outcome or even make informed comparisons between different sets of simulation runs.

This approach can lead to ambiguities and is really an indirect method of including

uncertainties missed by W in the dynamic modeling stage.

5.2 A New Direct Approach

In Figure 5-2, a new approach to the alerting process is presented. As opposed to

Figure 5-1, the intermediate block of metrics is removed in favor of directly estimating

the probabilistic measures in which to make the alerting decision. The idea is to bypass

the middle step since the results of the scenario simulations are being utilized to adjust

the parameters in the threshold metrics in the first place. In Figure 5-1, the notion is that

the probabilities { P(FA), P(SA) } are functions of the set threshold metrics; thus in terms

of the cause-effect relationship, the set thresholds determine the probabilistic

performance. The concept is somewhat reversed in Figure 5-2 where the probability

values determine when and where to alert. Because of the feedback in Figure 5-1 to meet

pre-determined probabilistic requirements, it is really the probabilistic parameters that

drive the threshold placement. As mentioned before, in effect, the threshold placement is

really just a function of the probabilistic performance measures and the probabilistic

distribution of simulation scenarios.

In the concept of Figure 5-2, the working trajectory model is made to match as

closely as possible to the "truth" model (W = T). In doing so, the alerting algorithm is

obtaining a direct prediction of the likelihood of conflicts and the ability to avoid them.

These values can then be utilized as the threshold metrics in the state-space of Z with the

alerting criteria denoted by Z R (performance requirements).
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As indicated by the dashed line in Figure 5-2, it may be possible to map the

probabilistic values to other metric variables in another state-space, X, with alert space

X A . In doing so, this may allow for easier interpretation of the threshold logic since

probabilistic values may not always be clearly understood by the human operator.

However, this may not always be possible unless a one-to-one mapping of variables

exists. The problem is akin to the same type of dilemma associated with inverse

kinematics.

5.3 Implications from a Probabilistic Perspective

The approach shown in Figure 5-2 requires a direct modeling of the uncertainties

in the trajectories of the aircraft, which in turn can help determine the impact and

influence of each source of uncertainty on the alerting performance. This direct link

gives rise to some very important implications that can have a significant impact in the

design and analysis of alerting systems. To fully understand the consequences requires a

detailed explanation of the differences as well as the association between Figures 5-1 and
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5-2. For theremainderof thiswork, theformermethodwill be referredto asthe adhoc

approach, and the latter as the direct approach.

There are some very important ramifications to notice here. First, the ad hoc

method tends to develop a global threshold setting as opposed to a situation-specific

threshold, one that is individually tailored to the current encounter situation. As will be

shown, a global threshold tends to exhibit a higher level of uncertainty and reduced

overall level of performancel Second, the approach is also heavily influenced by the

distribution of test scenarios used for the simulations. Using an alternative sample of test

cases could change the performance outcome resulting in a different set of threshold

values. In effect, the thresholds could be highly biased toward certain conflict conditions

while ignoring or discounting other possible encounters. Also, a complete rerun of the

iterative process would be needed again to formulate a new set of threshold parameters.

Finally, the ad hoc =approach can be considered a functional mappingof the performance

state-space, Z, to a different domain of state-space, X. Though this can be advantageous

under certain conditions or applications, it can also be a disadvantage when the

complexity of the mapping is considered.

5.3.1 Global Design vs. Situation-Specific Design

A global design refers to a process in which the simulations used to set the

thresholds are based on an aggregate mixture of different encounter scenarios; while a

situation-specific design only considers the current situation at hand. To illustrate this

concept, consider the following example. Take an automobile company designing a

"world" car to be sold globally under one baseline model. There are some obvious

advantages to such a tactic, of course, since it may be minimizing labor, parts, design,

and advertising costs. Suppose this company gathered the following data shown in
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Figure5-3aon theheightof driversin countryA, B, andC. Oneof thedesign(or

performance)requirementsis to beableto seat95%of thedriverscomfortably.

_/i, (9"1,nl

a) Individual Distributions b) Global Distribution

Figure 5-3: Example of Global Design Distribution

Assume the data show that 95% of drivers sampled were between 5'0" and 5'6" in

country A, 5'2" and 5'8" in country B, and 5'4 and 5'11" in country C. These distributions

will be associated with the random variables T_, Tz, and T3, respectively; with

2 2
corresponding means, variances, and sample sizes of _, ¢y_, n_; ,u2, o"z , n2; and ,u3, _Y3,

n 3. If the company were to design different cars for each of these markets, the size and

dimensions of each car would more than likely be tailored to meet the requirements of

each country separately. However, if restricted to a one ear design in which a combined

global distribution, T_ (see Figure 5-3b), is utilized as the test data, then some

compromises and added difficulties would be encountered. The combined distribution

2 (see Appendix B for derivations):would have the following mean,/J_, and variance, o'_
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_ n_ n2 n3 (5.1)

0"6 = 0"12+--0"2 +--0" + #_ +_-12 +-_" 3 -16 (5.2)N N

where:

N = n_ + /'l 2 + ll 3

It very important to note here the following characteristics:

(5.3)

n n(o, (S.4)0"G -- 0"2'

There are three significant consequences that come out of these equations and also

graphically from Figure 5-3. First (from Equations 5.1 and 5.3), the ...mean of the global

distribution will not be the same as the mean of the individual distributions (modeling

error); unless, of course, 11 = P-/2 = 13. In fact, it is probably unlikely that 1c would

be equal to even one of the individual means. Second (from Equations 5.2 and 5.4), the

variance, or spread, of the global distribution is larger than at least one of the other

individual distributions (increase in overall uncertainty). The increase is due to the

additional dispersion caused by the conglomeration of the different distributions located

2
at different positions (the effect of the individual means on the global variance, 0"_, can

be seen in Equation 5.2). These additional terms will be called the across-sample

variance as opposed to the in-sample variance, 0"2, of each separate distribution. And

finally (from Equations 5.1 and 5.2), the global distribution can be heavily biased toward

individual distributions by having uneven sample sizes. One consequence is that

performance in certain situations may be compromised more than others. The global
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performancemayappearto beadequate,but in individual situations,theoutcomecould

becompletelyunsatisfactoryeventhoughit wasincludedin thesimulations.

Sometimes,thereis not aclearlinedefining aglobaldistribution. For instance,

thedifferent countriescouldbebrokendownfurther into maleandfemaledrivers,each

with its own separatedistribution. Thesecouldevenbe takendownmoreby, say,age

groupor householdincome. The appropriateamountto divideout dependsonthe

problemitself. Theremaynotbeanyjustification to utilize theknowledge.For example,

it maynot makeanysenseto designa carspecificallyfor womenonly. How specificthe

distributionsneedto bewill likely dependoncostsor what is the appropriatelevel of

uncertaintythatcanbeafforded.Also, the informationor datamaynotexist to allow for

morespecificcategorizations.

The graphin Figure5-4diagramsthelevelof uncertaintyin astochasticprocess.

A deterministicsystemwould fall on thefarleft of thebarwhile acompletelychaoticand

unpredictablesystemwouldbeto thefar right. A stochasticsystemwould havesome

amountof inherentuncertaintybuilt in (i.e.nomatterhow muchinformationis available,

therealizationof a singleeventis still notcompletelypredictable).This is indicatedby

thelocationof thevertical line in thefigure andrepresentstheuncertaintyinherentin T.

Errorsdueto modelingwill increasetheoveralluncertaintyof thesystemby inducing

additionalcomponentsto therightof this line (e.g.Equation5.2). Predictabilityand

performanceof thesystemis thusdegradedif therearesufficienterrorsin themodels

usedin thedesignprocess.
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Figure 5-4: Level of Uncertainty

The examples above allow a better understanding of the importance of utilizing

appropriate simulation models. Returning back to conflict avoidance and the ad hoc

approach of Figure 5-1, the consequences can be re-worded in the following manner with

reference to the terms defined in Chapter 4:

i) Use of a global distribution would likely result in modeling errors and

therefore increase the overall uncertainty of the system since the design is not

individually tailored to the current encounter situation. The threshold would

instead be based on a weighted average of thousands of sample scenarios

which may not even be applicable to the current situation at hand (W ¢ T).

ii) Virtually any threshold setting can be "shown" to be optimal by merely

weighting certain encounters to take place more often. This could occur

inadvertently, of course, but may easily lead to inappropriate results and

conclusions.

To further clarify these concepts, a simplified conflict simulation example will be

given. Figure 5-5 shows a possible subset of sample simulation scenarios that might be

107



usedastestcasesfor theadhocapproach.Theaircraft in thesesix testcaseseachhave

stochastictrajectorieswith somerandomdistributionsothat repeatedrunswould resultin

differentpathsbeing taken.For thepurposeof this discussion,thesescenarioswill be

labeledT_,Tz, ..., T 6 with the indices to designate the different encounter conditions.

Notice that the simulations represent the "truth" model of trajectories; for which the

alerting logic is to be tested against to determine the system's performance. For

clarification, the six cases shown in Figure 5-5 are just a minute subset of thousands of

simulation scenes to be used in the ad hoc process. For the sake of simplicity, assume

there are a total of q different encounter situations in the simulations so that T_, T2 .....

Tq span the entire distribution of scenarios. In the testing of TCAS, there were literally

hundreds of thousands of sample simulations used to help determine the appropriate

threshold parameters [Drumm, 1996; Williamson and Spencer, 1989; Miller et al., 1994].

The performance of the threshold logic could be determined by use of the

definitions of P(FA) and P(SA) given back in Sections 3.2, or more precisely in the

following form,

number of alerts that were unnecessary

Pc (FA) = total number of alerts
(5.5)

P_(SA) = number of times an alert is successful in avoiding a conflict (5.6)
total number of alerts

In the ad hoc approach, these values are actually global or overall performance

metrics which will be denoted with the subscript G. The reason for the differentiation is

because the metrics are computed over the entire spectrum of simulation scenarios using

the same threshold setting. They are a compilation, or weighted average, of the system

threshold's performance over all situations, T_, T2 ..... Tq.
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A thresholddesignedin this mannerwouldsuffice if theparticularthreshold

settingworkswell in eachof the individual T_cases(wherethesubscript,i, denotes

some particular scenario from 1 to q). However, such a setting is really a compromise

between the various test cases and is not optimized to deal with each of the individual

situations separately. In fact, the particular threshold could be detrimental in certain

cases, and yet, in the global metric, still appear to perform adequately. It has already

been shown that this type of design approach, which is based on using a distribution of

different scenes in the simulations, will lead to an overall drop in system performance

because of the increase in modeling error and also an increase in the overall uncertainty

of the process.

To elaborate a little more on the above statement, assume an example where the

current situation is T 3 of Figure 5-5 (two aircraft crossing at near fight angles). Keeping

in mind the situation is still stochastic, the most accurate way of determining an

appropriatealert threshold would be to utilize a dynamic model W = T 3 to predict the

likelihood of a conflict. This is the method of the direct approach. The threshold should

not be determined with any influence, whatsoever, from any of the other test cases, T_,

T2 ..... Tq (except for T3). They have no bearing on the current encounter and their

influence could actually be detrimental to the decision to alert for the current situation T 3.

Take the case of T 5. The two middle aircraft in that scenario appear to be in a

similar conflict encounter as T3; however, the additional surrounding aircraft would more

than likely require a different set of alerting criteria to account for the loss of lateral

maneuvering available to resolve the original conflict { P(SA) will be affected}. A

threshold optimally set to handle T 3 may, on the other hand, be ineffective, or even

hazardous, in the case of Ts.
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The adhocapproachwhich usesanaggregateof the individual scenarioswould

simplybeobtainingaweighted,globalthreshold.Thealertingperformanceonaverage

wouldbe lessthanoptimalbecauseof modelingerrorsandincreaseduncertainties

inducedinto thedesign.Utilizing only onethresholdcriterionto handlebothT3andT5

would resultin asystemthatwouldnotbebestsuitedfor eithercaseindividually, but

insteadwouldbeacompromisebetweenthetwo.

Takethecaseof theGroundProximity WarningSystem.If thethresholdswereto

bedesignedbasedonanequaldistributionof flat,medium,andhigh slopingterrain

cases,thenonemightexpectto find compromisesin performancein eachof the

individual circumstances.Thethresholdwouldbeaveragedout to beoptimizedglobally,

but theoverall uncertainties(from lackof informationabouttheterrainfeatures)would

be large. Theresultis highratesof falsealarmsover relativelyflat terrain,but

inadequatewarningtimein mountainousterrain. Changingthedistributionof the

simulationswouldonly resultin biasingthethresholdstowardcertaintypesof terrain

conditionsandwouldnotbeagoodsolutionto dealwith theproblemsincejet transports

areexpectedto be flown almostanywherein theworld.

It is, however, possible to break the thresholds down into multiple scenario-

specific groupings using "if-then" statements or include additional metrics, provided, of

course, the information is known. For example, if the aircraft is currently over flat terrain

or the ocean, then one set of thresholds could be utilized; if it is in a region of high

mountains, then another set of thresholds would be invoked.

In the case of the traffic example of Figure 5-5, the breakdown can then be

expressed as Equation 5.7.
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P(FA)

P(SA) =

[f(X_), if T_
X a

= lf_(2), if T 2

/f3(X _), if T 3
L --

g_(Xm), if T 1

g2(X2), if T 2

g3(X_),, if T 3

(5.7)

where:

X A =

fO =

gO =

threshold metric settings (alert space)

false alarm mapping function (scenario specific)

successful alert mapping function (scenario specific)

This design process can be very time consuming and complex if many different

situations are to be addressed separately and the iterative procedure of Figure 5-1 must be

repeated for each one. This basically leads to the ad hoc approach of alerting design. As

explained earlier, TCAS, for instance, utilizes different Tau Criteron values and DMOD

buffers for different altitudes and encounter situations (see Figure 3-3). There are a fair

amount of changes in threshold parameters just to account for climbing/descending

aircraft and altitude, even for a seemingly simple design in which aircraft are assumed to

fly in straight, constant velocity paths and only use vertical evasive maneuvers.

In the evaluation of TCAS, the MITRE Corporation generated a large database of

pairwise aircraft encounters from actual recorded tracks in the United States airspace

[McLaughlin and Zeitlin, 1992]. Using this database, MITRE defined 10 types of

vertical encounter geometries (Figure 5-6) which were considered to encompass all

aircraft maneuvers observed. In evaluating the performance of the system, a large

number of simulations were used to cover each of these 10 encounter classes prumm,
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1996]. Changesto thethresholdparameterswerethensuggesteddueto theresultsof

thesesimulations.

Class 0

Class 5

Class 1

Class 6

Class 2

D.,

Class 7

Class 3

Class 8

Class 4

Class 9

Arrows represent aircraft vertical profiles

Figure 5-6: TCAS Encounter Types Defined by MITRE

[Drumm, 1996]

In another example, Zeghal [1994] divides horizontal planar conflicts into 3

separate classes of encounters when using a force potential method. Three different sets

of equations are defined to best express the threat of collision for: 1) head-on, 2)

overtaking, and 3) tangent encounters. The need to derive a separate threshold metric for

different encounter situations illustrates the desire to veer toward a more situation-

specific design in order to maintain performance.

This method is one way of dealing with this problem, but it be can be a tedious

process of breaking up and grouping the scenarios to cover all possible encounter

geometries and flight conditions. In a more general conflict alerting environment (such

as Free Flight) when waypoints, intent information, multiple aircraft, and 3-D encounters
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are all fused together, it becomes extremely difficult to utilize such a scheme to

amalgamate all the individual situations and develop separate thresholds for each one. In

the ad hoc approach shown in Figure 5-1, it would seem necessary to perform the task

iteratively for each scenario T_, T2, • • •, Tq in order to map out a different alert space,

X a, for individual encounters. This would be true unless, of course, one could pick a set

of threshold variables which would allow settings to be virtually invariant of the

encounter situation. In fact, this is the approach shown in Figure 5-2 and the topic of

discussion in the following sections.

5.3.2 Relating Performance Measures to Alerting Thresholds

In using the ad hoc approach, the choice of state-space variables for the threshold

can be quite variable as was shown in the survey of alerting methods (Appendix A). If

so, then what constitutes a viable or sufficient set of variables? Is the use of only the

range variable (r) adequate? Or is the time to closest point of approach (tcp A) or

expected miss distance (m) also needed? The answer actually depends on two factors:

1) the type of situations to be encountered, and 2) the performance requirements.

It was mentioned earlier in this chapter that the ad hoc approach of Figure 5-1 can

be thought of as a mapping of performance measures back to another set of threshold

variables due to the iterative feedback adjustments of threshold parameters. Referring

back to Equations 5.1 and 5.2, the mapping equations, fO and gO, are governed by the

scenarios used in the simulations; and the performance measures, P(FA) and P(SA), are

used to judge the efficacy of the threshold setting, X a, Thus, the encounter scenarios and

the performance requirements are the only defining factors which can determine whether

the choice of threshold variables will be adequate.
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Figure 5-7showsaconceptualillustrationof mappingthresholdsin thestate-

spaceof X to thestate-spaceof performancemeasures,Z. An exampleof performance

state-space,Z, mightbe thevariablesof theSOCdiagram,P(FA) and P(SA). The alert

space in X is denoted by the region, X A, and the required performance region to be met

in Z will designated Z R. When X A is mapped into Z, it actually becomes a single state

vector z A. If z A is outside the region of Z R, as depicted in the leftmost illustration of

Figure 5-7, then the performance requirement is not met and the threshold parameters

need to be adjusted until a suitable performance, z A, is obtained. This is shown in the

series of drawings going from left to right, and represents the iterative search and fine

tuning of the feedback loop back in Figure 5-1. Notice that X a is changed in each step.

X

Z

P(SA)

LL
_'. I \ %

zR ".l.o Z R 1"<

Z a ] Z a

P(SA) P(SA)

k
\ I
% I

\ I

k iS A

P(FA) P(FA) P(FA)

Figure 5-7: Mapping to Performance State-Space

If an acceptable X a cannot be found, then there are four possible options. The

first is to change to a different set of threshold variables (i.e. change the state-space, X).

The threshold metrics may not have been appropriate for the encounters, or else there

may have been an insufficient number of variables to handle the complexity of situations.

115



The secondoption,whichwasexplainedin the lastsection,is to partitionout the

thresholdsto handlemoresituation-specificgroupings.Basically,different setsof

thresholdcriteriaareusedfor differentencounterscenarios.

Taketheexampleshownin Figure5-8awhereanalertingthreshold,X A , is used

for three specific types of encounters with the corresponding mapping functions f(),

f20, and f30- In this case, only fO maps adequately to the required performance

specifications. If X a were to be utilized for all three encounter situations, the overall

performance of the system would be a weighted average of each of the individual

outcomes. In Figure 5-8b, a second state-space, X', with different metric variables is

used to derive adequate thresholds for f3(); while the original state-space but different

parameter settings sufficed for f2(). The result is again an increased number of threshold

metrics designed and tailored specifically for different types of encounters.

X X

Z

P(SA) P(SA)

f
f

f

P(FA)

a) Global Threshold

P(FA)

b) Situation-Specific Thresholds

Figure 5-8: Use of Situation-Specific Thresholds (State-Space Explanation)
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Thethird option is to simply limit theuseof thealertinglogic to specifictypesof

encounters,basicallywhatis donewith TCAS. It canonly beusedfor nearterm,last

minuteconflictsdueto thelackof accuratebearinginformationin the logic. In thecase

of GPWS,it mightbeconceivableto havetwo separatethresholddesigns,onefor

mountainousterrainandonefor flat terrain. Theswitchcouldbemademanuallyby the

pilot orbetteryet, automaticallywith someonboarddatabasecoupledto navigational

data.

Themethodof limiting thealertinglogic to certaintypesof encountersis

somewhatanalogousto T --_W asdiscussedbackin Chapter4. The ideais to maintain

goodresults;albeit in restrictedcircumstances.Sometimesit isout of necessityto cope

with the limitationsof thedesign,suchaswith thelackof availableinformation to the

system.Othertimes,thefunctionalrequirementsmaynot warrantor call for the

additionalcapabilities(e.g.initial requirementsfor TCAS werefor short termconflicts

only).

Thefourth andfinal option is to utilize adifferentresolutionstrategy. Given that

theperformanceis partlybasedonthe ability to avoidaconflict, it is naturalto assume

somemetricsuchas P(SA), which is based on a specific avoidance maneuver, is

included in the performance state-space. Since this was already discussed in Chapter 4,

not much more on this topic will be mentioned here other than to say a different or a

more drastic avoidance maneuver might be examined.

5.3.3 Using Performance Measures as Alerting Thresholds

In the previous section, the relationship between the performance metrics and

alerting thresholds was examined. Now, one might ask why go through all the trouble

testing and re-testing, adjusting and re-adjusting all the threshold parameters, when the
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performance metrics, themselves, could be used as the alerting thresholds? It was already

explained in Section 5.1 that the performance values were really driving the threshold

settings in the ad hoc approach. If this is the case, then it appears that if the performance

measures could be obtained directly in real-time, there would be no need to implement

the additional iterative steps to map to what would essentially be a set of redundant

metrics.

The mapping procedure shown in Figure 5-1 leaves open many different possible

variables for use as metrics without real analytical computations of conflict in the

presence of uncertainty. In essence, it is bypassing the dynamic modeling stage of Figure

3-2, either completely or partially while leaving the fine tuning to pattern matching. The

reason for the required mapping is because of the disparity between the working

trajectory model, W, and the "truth" model, T. Without the ability to obtain an accurate

prediction of conflict directly from its own trajectory model (since W e T), the alerting

logic is forced to trial and error methods.

The result is akin to obtaining a simplified model of a probabilistic model, such as

through correlation or regression modeling to find a simplified set of metric parameters to

best fit probabilistic data. However, there is really no need for this since a prediction of

alerting performance can be obtained directly by using probabilistic trajectory modeling

assuming W = T (the direct method). In the direct approach, there would be no modeling

error provided W is a good depiction of T. The working trajectory model, W, is either a

representation of the simulation scenarios in Figure 5-1 or a subset of them. In order to

do so, W must be allowed to exhibit any trait that would have been characterized in the

simulations, including the likelihood of human errors and blunders.
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5.3.4 Continuous Update of Trajectory Model W

In the direct method as shown in Figure 5-2, there is a need to continuously

update the dynamic model, W, utilized by the alerting system to keep up with the current

situation. As long as the uncertainties in the trajectories can be modeled, the update

process is a natural progression as new aircraft states and other data such as intent

information is brought in to modify W. At any instant in time, the current aircraft states

are projected into the future using W and the probabilistic values, P(FA) and P(SA), are

computed. The decision to alert is then made directly from these performance estimates.

The direct approach which utilizes W = T is as situation-specific as one can get

since the alert decision is based solely on any current information specific to the

encounter. All knowledge of the current _ituation, includi.ng the effects of uncertainties,

is contained in T. Take the example back in Figure 2-9 where only range and range rate

were used to define an alerting threshold. The two variables are simply not sufficient to

completely define a specific encounter situation. There is no information differentiating

encounters at different bearings or predicted miss distances. Nor is there information

regarding the effects of uncertainties or what type of intent information was involved. It

is, however, conceivable to develop an infinite number of thresholds for every possible

type of encounter scenario and store them in the alerting logic (much like the if-then

statements of Equation 5.7). But this is not very practical if the alerting system were to

be designed to handle multiple aircraft in 3-D flight and various types of flight

conditions.

The idea behind the direct approach and W = T is to allow the computation of the

threat condition on the run as the situation occurs. It is analogous to many current

computer chess programs which wait for a move to be made; then based on the current
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configuration,propagatetheprobablemovesof eachchesspiece(out to a finite number

of movesahead)andmakeadecisionbasedon theresults.This wastheapproachused

by IBM's DeepBlue supercomputerin its highly toutedandsuccessfulmatchagainst

chessGrandMasterKasparov[Krauthammer,1996]. Evenin the limited confinesof the

chessboardandtheincredibleprocessingpowerof today'ssupercomputers,it is nearly

impossibleto determinewhatall themovesshouldbeprior to thestartof thegame

(exceptfor thefirst few movestheopening). Therearejust toomanypossible

configurationsevenon thediscretespaceof achessboard. Instead,thesimulationsare

performedby thecomputerson therun asthe situationunfoldsandthedecisionsare

situation-specificbasedon thecurrentconfiguration.

In Chapter8,this similar tacticis usedto developareal-timeconflict alerting

probe. By keepingW = T, thealertingdecisionis tailoredspecificallyto thecurrent

conditionsof theencounter.Any changesto aircraft stateor intentinformationare

accountedfor directly anddoneasthesituationoccurs.This resolvestheproblemof pre-

determiningseparatethresholdmetricsfor everypossibleencountersituation.

5.4 Summary

In this chapter, the common ad hoc approach to alerting system design was re-

examined from a different perspective. It was shown that probabilistic concepts of

performance and uncertainties were embedded within the design process. As discussed

with reference to the iterative method of Figure 5-1, most threshold metrics can be

thought of as a set of simplified variables mapped to satisfy probabilistic performance

criteria. The notion that probabilistic analysis and uncertainty drive the alerting system

design is clearly seen in the feedback loop of Figure 5-1.
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A newdirectapproachto alertingdesignwaspresentedandshownbea more

compactmethodof estimatingperformancedirectly withouttheunnecessarystepof

mappingbackto aredundantsetof thresholdmetrics. Sinceall informationwith regard

to thecurrentsituationis containedin thecharacteristicsof theprobabilisticaircraft

trajectoriesof T, properlymodelingthesetrajectoriesin theconflict logic (W = T) allows

for themostaccuratepredictionof thecurrentencounterin a stochasticenvironment.

This ensuresthealertingdecisionis basedon situation-specificinformationratherthana

globalsetof datawhichwasshownto havea degradingeffectonperformance.
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Chapter 6

Probabilistic Analysis of Conflict

As mentioned in Section 3.3.3.3, the use of probability estimation has been

explored in conflict analysis before [Kuchar, 1996; Paielli and Erzberger, 1997;

Heuvelink, 1988; Rome and Kalafus, 1988; Taylor, 1990; Bakker and Blom, 1993;

Williams, 1993; Warren, 1997, Prandini et al., 1999; Innocenti et al., 1999]. In previous

work, Paielli and Erzberger [1997], developed a viable analytical solution to determine

the probability of a conflict for two aircraft maintaining a straight ahead course. Their

approach used Gaussian uncertainties to model along- and cross-track error and can be

rapidly solved and implemented in real-time. If more complex uncertainties (e.g. non-

Gaussian, 3-D trajectories, aircraft changing course, pilot reaction times) are modeled, it

becomes increasingly difficult to obtain an explicit analytical solution.

In this thesis, a Monte Carlo based methodology is employed. The approach can

intake a large and complex assortment of probabilistic distributions without added

difficulty. The complications of estimating the future trajectory were explained in the

previous chapters and it was shown how modeling errors could adversely affect the

conflict prediction and alerting process. Because the approach is based on Monte Carlo

simulations, there is a great deal of flexibility built into handling difficult trajectory

models. However, since the simulations are iterative, significantly more processing

power is required for the computations than, say, the method employed by Paielli and

Erzberger [1997]. Also, concerns arise on the stochastic nature of the process to achieve
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repeatabilityof theresults. Nevertheless,a systematicapproachcanbedevisedto obtain

fairly fastresultswith sufficientboundson theaccuracyof thevalues.

6.1 The Trajectory Model

To calculate the probability of a conflict, P(C), the positions of the involved

aircraft must be projected into the future using some form of trajectory model as was

discussed in Chapter 2. Essentially, the subscript W has been dropped off P(C) with the

understanding that only a working model estimate of the actual truth trajectory can be

used in simulation. The implications of this were discussed back in Chapter 4, and it has

further consequences when intent information is included in the model as will be

explained later in another chapter.

Figure 6-1 is a pictorial representation of an aircraft in flight showing some of the

possible parameters which may affect the uncertainty in the future trajectory. The

modeled parameters might include uncertainty in the current position estimate, future

along- and cross-track position variability, and the potential for and magnitude of course

changes.
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Figure 6-1: Potential Sources of Uncertainty in Trajectory

The approach of this thesis assumes that the uncertainty of the future path can be

approximated by an ensemble of possible trajectories weighted by the likelihood of their

occurrence. The work involves modeling each parameter that could influence the flight

of the aircraft as a probabilistic distribution, and then using random sampling to generate

variations in flight path during successive Monte Carlo iterative runs. Figure 6-2 shows

the baseline model that was used. In this thesis, the aircraft with the alerting system will

be termed the host aircraft while other vehicles involved in the encounter will be denoted

as intruder aircraft.

Uncertainty in the current position is modeled after the accuracy of combined

Global Positioning System (GPS) and Inertial Navigation System (INS) estimates, and is

shown as a normally distributed random variable with standard deviation of 50 meters

laterally and 30 meters vertically. For level flight, course drift in the future trajectory is

modeled as a 15 knot standard deviation speed fluctuation (along-track error) and a 1
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nauticalmile standarddeviationcross-trackerror. Thesetrackingerror valueswere

basedon dataobtainedempirically from observationsof currenttraffic by Paielli and

Erzberger[ 1997].
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Figure 6-2: Baseline Trajectory Model

Additional model parameters can easily be included into the Monte Carlo

simulations without much added difficulty or loss in computational speed. The more

common ones utilized within the scope of this thesis work are displayed in Figure 6-3.

They include provisions for the likelihood of random course changes in heading and

altitude; plus pilot response latency during avoidance maneuvers used in conflict

resolution analysis. The specific distributions chosen serve only as one possible model

and undoubtedly other distributions can be used. The modifications are relatively simple

with the Monte Carlo approach, and usually only involve sampling from a different

distribution and possibly making some appropriate changes in the program algorithm to

reflect the nature of the adjustments in trajectory path. For example, in descending flight,
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fluctuation in speedhasbeenobservedto increaseslightly to 20knots standarddeviation

andtheverticalratecanvarywith astandarddeviationof 300ft/min for a 1500ft/min

descent,bothnormallydistributed[Erzbergeret al., 1998].Theseadditionalparameters

canbeaddedeasilyto aMonteCarlosamplingalgorithmwithout mucheffort andwith

little lossin processingspeed.
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Figure 6-3: Additional Model Parameters

The task of modeling human behavior is extremely difficult to begin with, and

any attempt to quantify the likelihood of the pilot in altering the aircraft's present course

should be handled with caution. As Figure 6-3 shows, heading and altitude changes were

modeled as Poisson processes with an average rate of occurrence defined by the

parameters 2 t and 22, respectively. The distributions are formally known as exponential

distributions in probability theory [Drake, 1967] and show the likelihood of the first-

order interarrival time (i.e. first occurrence of course change). The units of these

parameters are arbitrary, but were taken as 2 t turns per hour and 22 altitude changes per

hour. Another possibility could have been a distance based unit such as altitude changes

per mile. The magnitude of a random course maneuver was modeled to be uniformly
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distributedto aspecifiedlimit suchas+ 20 degree in heading or within 10,000 ft in

altitude.

The purpose of including random course changes into the trajectory is simply that

they do occur when considering trajectories on a statistical basis and are most likely the

largest source of uncertainty in the prediction process. When not included, the outcome

becomes very similar to the single path model shown back in Figure 2-3, and conflict

determination and resolution can often become overly simplistic. Simply choosing to

ignore the possibility of pilot actions because of the complexity undermines the true

difficulty involved in conflict prediction and analysis. The mere fact that researchers

examine worst case methods indicates the concern over this problem. Also the situation

is exasperated in light of the current push for less restrictions and more flexibility for

rerouting in the newly termed Free Flight environment [RTCA, 1995; Phillips, 1996].

The modeling of the course adjustments into the trajectory serves to better

understand the impact of their occurrence on the entire conflict prediction process.

Again, the distributions used in the model are only estimates and cannot be expected to

perfectly match the exact outcome. The purpose is to capture the essence of the

uncertainties which may lead to possible conflict encounters in the desired time frame.

Even if the values of the parameters are unknown, the impact of changes in the

parameters can be evaluated to determine their relative importance in the conflict

assessment or help determine trends. This in turn will help focus future efforts on

improving trajectory estimation. _ ......
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6.2 Calculating the Probability of Conflict

6.2.1 Monte Carlo Simulations

Once the distributions of the trajectory model are developed, the probability of

conflict, P(C), between aircraft can be obtained by extrapolating their positions out into

the future. The goal is to determine the likelihood that one or more intruder aircraft will

violate the protected zone of the host aircraft of interest, thus determining the level of

threat to the host. For the discussions in this thesis, unless specifically stated otherwise,

the protected zone is defined to be a cylinder 5 nautical miles in radius and extending

1000 feet above and below the host aircraft.

Figure 6-4 shows an example of the predicted position distributions for a single

aircraft traveling with a nominal speed of 400 knots. Intent information of a 45 ° right

turn at a waypoint 100 nautical miles ahead was assumed to be known. At each time

shown in the figure, the aircraft is predicted to lie within the corresponding region with a

probability of 0.9999.

Figure 6-4 was generated from Monte Carlo simulations using some of the

baseline trajectory distributions shown back in Figure 6-2. It included along-track

fluctuations (Gaussian with standard deviation cr = 15 knots) and cross-track variability

(Gaussian with standard deviation a = 1 nautical mile at steady-state). At t = 0 minutes,

the position of the aircraft is known exactly since no sensor errors were included in this

example for simplicity. As shown, the predicted position error grows both along-track

and cross-track in time, but generally follows the intended path.

If for some reason there is uncertainty that the aircraft will make the intended turn

at the waypoint, an additional confidence probability can be included. In such a case, the
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position distribution would split into two separate regions: one for the case in which the

turn is followed, and one for the case in which the turn is not followed. A situation where

this type of modeling might prove especially useful is in vertical conflict analysis where

an intruding aircraft may not be entirely trusted to level off at the expected altitude.
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Figure 6-4: Example Projected Position Uncertainty

The probability of a conflict, P(C), can be obtained by extrapolating each

aircraft's position in a similar manner. Given the initial locations, speeds, and headings

of the aircraft, the P(C) can be estimated through Monte Carlo simulation. Each Monte

Carlo run consists of propagating the trajectories over time (using point-mass dynamics)

and determining whether separation minimums of the protected zone are violated. The

trajectories vary randomly with each run according to the uncertainty distributions chosen

to define the trajectory model (e.g. Figures 6-2 and 6-3). In each iteration, a random
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samplingfrom eachdistributionis chosenandusedfor thetrajectorypropagation.For

instance,onerunmighthavetheintrudermakea 14degreeheadingchange1minuteinto

theflight; while anotherrun may have the intruder follow a straight line path for over 30

minutes. After a certain number, N, of Monte Carlo runs, a count of the number of

protected zone intrusions, x, is totaled. Dividing x by N is then an unbiased estimator

of P(C). A schematic of the Monte Carlo iterative process is shown in Figure 6-5.
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Figure 6-5: Monte Carlo Simulation

6.2.2 Propagation Method

When propagating the aircraft into the future, one possible approach is to check

for a protected zone violation at the end of incremental time intervals as depicted in

Figure 6-6a. For each time interval, At, the position of each aircraft is calculated and

horizontal and vertical ranges are checked against minimum separation requirements.

This method requires that the intervals be small enough so that intrusions which might
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occur in between each end point are not missed. However, reducing At can greatly

increase the computational time. The problem becomes a tradeoff between the maximum

projection time and the time required to calculate P(C).

A more computationally efficient approach can be devised by assuming the

trajectories to be comprised of a series of straight line segments with instantaneous

trajectory modifications. This simplified assumption is represented in Figure 6-6b, where

change points approximate key course changes in the trajectories previously depicted in

Figure 6-6a. In between change points, the velocity vector of each aircraft is constant.

Separate change points reflect a new heading, altitude rate, or speed change in the

trajectory.

The simplification can lead to some inaccuracies from the trajectory model due to

general displacement errors as discussed in Section 4.1.2. This is due mainly to the step

changes around the transition regions induced by the simplified mode/. If deemed

necessary, an added lag time can be included prior to the step changes to account for

aircraft dynamics during the maneuver. Krozel et al. [1997] found the approximation of

step maneuvers (bank angle and vertical rate) to adequately match simulated Boeing 737

dynamics provided a 2 to 5 second lag was included prior to initiation of turn and altitude

changes. For speed maneuvers, they conceded to using an acceleration or deceleration

component to better model the relatively slow dynamics of aircraft speed changes.

The approach is further simplified by transformation into a relative coordinate

frame such as one with respect to the initial host aircraft position (shown in Figure 6-6c).

The protected zone is placed around the origin representing the position of the host, and

the relative trajectory of the intruder aircraft is propagated. Because of the assumptions

made, the trajectory is comprised of straight line segments with each endpoint
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correspondingto acourseor speeddeviationby either the host or the intruder aircraft.

The task is then to determine if any individual line segment passes through the protected

zone around the host aircraft at the origin. Analytic geometry can be used to derive the

solution for the intersection between the equation of lines (either finite or infinite) and a

3-D volume (the protected zone cylinder). The equations can be found in Appendix C.
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Figure 6-6: Aircraft Trajectory Propagation
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Not only doesthismethoddetectconflictsalongtheentirepath, ratherthanat

discretepoints;but thecomputationaltimeis decreasedby ordersof magnitudecompared

to theincrementaltime approachof Figure6-6a. Also, themethodis insensitiveto the

timescaleof theprojection(theequationsfor a line-volumeintersectionareapplicableto

aninfinite line); it only dependson thenumberof courseor speedchangesthat occur

betweenbothaircraft.

In someinstances,it maybedesirableto modelthecoursetransitionsmore

accurately,aswouldbethecaseif anencounteris expectedto be in thevicinity of the

maneuvertransition. If themaneuveris far aheadinto thefuture,aninstantaneous

maneuveris lesslikely to beafactorastheuncertaintyin thepathgrowsovertime.

Whenthemaneuveris expectedin thenearfuture,amoreaccuraterepresentationof the

maneuvermaybein order. This mightbethecaseif anintruding aircraft is relatively

closeandthecrucialconflict point is somewhereneartheregionof thecoursechange.

Take,for instance,theexampleshownin Figure6-7awherethehostaircraft

(white) iscurrentlyin aturntowardatargetwaypoint. A trajectorymodeledwith an

instantaneousturn(dashedlinewith suddenpathchangeof A_) may be overly

simplistic since the actual turn radius can be on the order of 10 nautical miles or so

depending on the speed and bank angle. This could lead to a missed detection of the

conflict with the intruder aircraft (black) shown in the picture. Thus, it is more accurate

to include additional line segments to better represent the actual change in the heading

over time. Figure 6-7b shows one additional change point, A, added to better

approximate the path of the host aircraft during the heading transition.

The turn radius (R) can be estimated from the intended bank angle (¢), speed

(u), and gravitational acceleration (g) using Equation 6.1.
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l) 2

R - (6.1)
gltan¢]

The center of the turn circle can be approximated to be in the direction perpendicular to

the current aircraft heading and at a distance R away. Using geometry, the position of

point A can then be determined as a tangent line from the turn circle to the target

waypoint position. The result is a two-segment path (shown as a solid line in Figure 6-

7b).

a) Instantaneous Heading Change

b) New Segmented Turn Maneuver

Figure 6-7: Heading Change Model with Bank Angle
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If moreaccuracyis desired,theturncanbe furthersub-dividedinto additional

straightline segments,thoughat acostto computationaltime. Thechoicedependson the

goalsof theconflict analysis.For verycritical, shortscenarioanalysissuchasthecase

for parallelapproachstudies,theneedfor amoreaccuratepathmodelwouldbe

important. For long termconflict probing,thedesirefor further look-aheadtime may

takeprecedenceoverneartermconflict predictionaccuracy.

6.2.3 Computational Accuracy

Because Monte Carlo simulations are inherently stochastic, a discussion on the

computational accuracy and performance is warranted. The problem posed in calculating

P(C) is basically that of estimating a k,alue of proportion, p. Each iterative run is a

binomial process in which a conflict (minimum separation criteria violated) occurs or it

does not. The number of conflicts, x, divided by the total number of iterative runs, N,

provides an unbiased estimator of p with variance cr2 given by

X

p = -- to._)
N

a2 = p(1 - p) (6.3)
N

From the Central Limit Theory in probability, the sum of N independent,

identically distributed random variables will approach that of a normal distribution as the

number N ---) co [Drake, 1967]. Thus when the number of iterations, N, is sufficiently

large (Johnson [1994] suggests N > 200 for the range of 0.75 > p > 0.925), the

normal approximation to the binomial distribution can be used to construct an

approximate confidence interval for the binomial parameter, p [Johnson, 1994]. For 3or

standard deviation accuracy (99.7%), the error in using x /N (Equation 6.1) to estimate
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thetrue P(C) can be computed from Equation 6.4. Noting that Equation 6.4 is a

maximum at p = 0.5, the upper bound of the 99.9% confidence error can be found by

using Equation 6.5.

3.D (1 - P) (99.7%) (6.4)3or
N

30.max = __32_ (99.7%) (6.5)

The tradeoff between the number of iterative Monte Carlo runs, N, and accuracy

in the estimate of P(C) is evident from Equations 6.4 and 6.5. The effect can be

visualized in Figure 6-8 where upper error bound (Equation 6.5) is plotted versus N.
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Figure 6-8: Monte Carlo Accuracy as a Function of Iterations

For the examples in this paper, N = 10, 000 was used as a compromise between

speed and accuracy, providing a 3or error in P(C) of at most +_0.015. There are

diminishing returns on improved accuracy as the number of iterations increases beyond
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this point at theexpensecomputationalprocessing.Originally developedona Silicon

Graphics,Inc. Indigo Elan 4000Workstation(purchasedin 1993),computationaltimeto

obtain P(C) from 10,000 iterations was on the order of 1 second for one pair of aircraft.

Use of newer workstations (Silicon Graphics Indigo R10000 and Octane MXE) have

shown a 2 to 3-fold increase in speed; bringing the up possibility of using the Monte

Carlo simulations as part of a real-time conflict alerting probe. There are some

advantages to such a system, and this concept will be brought up in the next chapter. A

test bed system has already been incorporated into part-task simulators at Massachusetts

Institute of Technology (MIT) and NASA Ames Research Center.

6.3 Conflict Probability Maps

Given the relative speed, heading, and altitude between a host and intruder

aircraft, a conflict probability map can be constructed to display the locations where the

intruder aircraft currently must be in order to result in a conflict at some later time. As an

example, assume two aircraft are co-altitude and both flying with a velocity 400 knots

with offsetting headings of 30 degrees. For simplicity, assume the host is flying directly

North at a heading of 360 ° and the intruder's heading is 330 °. Figure 6-9 shows a conflict

map of the likelihood of conflict for this specific encounter scenario. The host aircraft is

shown in white at the lower left.
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Figure 6-9: Example Conflict Probability Map

The plot shows the conflict probabilities for an intruder aircraft in the surrounding

airspace relative to the host aircraft. For example, an intruder in the position shown in

the figure (black aircraft) will cause a conflict in the future with probability

P(C) = 0.45. If the intruder were farther north or east of the host aircraft, the

probability of conflict would be lower. The plot shows actual data based on 10,000

Monte Carlo simulations at each 1 nautical mile spacing. The trajectory model was based

on the uncertainties presented in Figure 6.2 and the random heading change of Figure 6.3

with A_ turns/hr. The magnitude of heading change was limited to 20 ° in either direction

and uniformly distributed (see Figure 6.3).

6.4 Summary

In this chapter, a method was developed to calculated the probability of conflict,

P(C), based on Monte Carlo simulations. This approach allows a large number of

complex variables to be handled easily and efficiently in what would otherwise be

problems without tractable analytical solutions. Error bounds on the accuracy of the
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calculations can also be determined. In addition, a method to visualize the conflict

situation through the use of probability contours was presented.
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Chapter 7

Example Applications

In this chapter, several examples will be given to illustrate the utility of the

probabilistic methodology in different encounter scenarios. The examples demonstrate

the relative ease in which the methodology can be applied to both simple and complex

situations. The method can handle encounters in 3-D, with or without intent information,

and probabilistic trajectories. Since the approach is based on Monte Carlo simulations,

the derivations are not hindered by the complexity of the encounters.

7.1 Horizontal Conflict Examples

As a simple example, assume two aircraft (host and intruder) are co-altitude and

both flying with a velocity of 400 knots in opposite directions. If the intent of each

aircraft is known, then potential conflict situations can be predicted. Assume that both

aircraft have declared their intentions to _aintain their current speed, heading, and

altitude. This might be inferred, for example, through datalink of autopilot mode control

settings.

The potential conflict map as obtained through Monte Carlo simulation is shown

in Figure 7-1 (using the baseline trajectory uncertainty model from Figure 6.2). As a

reminder, in this example the intruder aircraft is traveling in the opposite direction as the

host. The chart is shown relative to the host aircraft located at the origin (0, 0) with its

track pointing up. The top of the chart is 200 nautical miles ahead of the host aircraft and

represents a 15 minute time frame. Contours of constant conflict probability are shown
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startingat P(C) = 1.0 around the host aircraft and decreasing in increments of 0.1. For

example, the intruder aircraft shown in the figure 100 nautical miles ahead of the host

aircraft will produce a probability of nearly 1.0. Variability and coarseness of the

contours are a result of the accuracy of the Monte Carlo simulations. In this case,

because the trajectory uncertainties are small, the corridor where aircraft must be located

to generate conflicts is relatively narrow. Although the example shown is for a specific

relative geometry and speed, similar maps can be generated for any situation.
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Figure 7-1: Intruder and Host Maintain Course

A more interesting case to observe is when aircraft may change course at some

time within the foreseeable future. In many cases, the intentions of each aircraft are not
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knownfor certain,but informationregardingrules-of-the-road,pastexperience,or flight

restrictionscanbehelpful in establishingthelikelihood of varioustrajectories.In Figure

7-2, the intruderaircraft is still headedin theoppositedirectionasthehost,butnow no

explicit intentionto maintainastraightcourseis assumed.
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Figure 7-2: Potential for Intruder Course Change

For this particular case, the likelihood that the intruder would make a heading

change is modeled as Poisson distribution with an average rate of A1 = 4 turns per hour

(see Figure 6-3). Also, the hypothetical flight rules in the airspace are assumed to require

aircraft to restrict heading changes to less than 20 ° within a 15 minute period. Thus,

potential changes in heading were modeled with a uniform distribution between +20 °.
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Theresultantconflict mapis shownin Figure7-2,againusingcontourspacingof

probabilitiesof 0.1. Note thattheprobabilityof conflict decreasesmorerapidly asone

movesfartherfrom thehostaircraft Thesameintruder100nauticalmiles aheadof the

hostwill now causeaconflict with aprobabilityof approximatelyP(C) = 0.83 because

there is some chance that the intruder will perform a turn.

In the next example shown in Figure 7-3, additional intent information regarding

knowledge of waypoints is added. For this case, the intent is supplied by the host aircraft

in terms of 3 future waypoint locations in which the host will shift its flight path laterally.

Again, the conflict map is shown with contour spacings of 0.1. Here, the intruder aircraft

100 nautical miles ahead of the host will not create a conflict as long as the intended path

is followed.

Comparing Figures 7-2 and 7-3 provides some insight into the potential benefit of

intent information. Consider for example the flight path shown in Figure 7-3. If the

host's waypoint information was not Used in the conflict detection, the situation would

likely be modeled as shown in Figure 7-2, resulting in a conflict alert. Such a conflict

would be unnecessary, however, since as Figure 7-3 shows, there would not be a conflict

with the intruder aircraft. The intent information has improved the modeling accuracy of

the trajectory (W _ T) and thus increases the chance of making an better informed

decision about alerting.
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Figure 7-3: Host Aircraft Following Waypoints

Conflict maps can also be utilized in the examination of avoidance maneuver

options for conflict resolution. Figure 7-4 shows an example 30 ° right turn avoidance

maneuver made by the host aircraft in response to a conflict alert in the example from

Figure 7-2. An additional uncertainty was included to represent variability in pilot

response time in initiating the turn maneuver. The latency time was modeled as a

Gamma distribution with an average of 1 minute and skewed with a 95% probability of

the maneuver occurring within 2 minutes.

Comparison of Figure 7-2 and Figure 7-4 shows the effect of the avoidance

maneuver on the probability on conflict. Similar analysis can be performed to determine
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whatotheravoidanceoptions(e.g.heading,speed,or altitudechanges)canbeusedfor

theresolution. For multiple aircraftin theairspace,themaneuvercanbecheckedto see

if it inducesadditionconflictswhich wouldnot haveoccurredwithout it.
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Figure 7-4: Host Aircraft Turns 30 °

7.2 Vertical Conflict Examples

To more fully illustrate the utility of the probabilistic methodology (especially in

more complex situations), several examples will be shown here to analyze the effects of

intent information on conflicts in the vertical plane. Rather than depict conflict maps,
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however, the discussion will revolve around false alert and missed detection rates using

the SOC methodology. In these examples, two aircraft are flying in opposing directions

with the intruder currently above the host aircraft by 5000 feet. Suddenly the intruder

descends directly toward the host aircraft at 1000 feet per minute. The uncertainties are

modeled using the baseline model shown back in Figure 6-2, and a conflict is defined as a

loss of minimum separation of 5 nautical miles in the horizontal plane and 1000 feet in

the vertical plane.

Two cases will be considered here. In the baseline case, it is not known whether

the intruder will level off at some point or continue its descent beyond the host aircraft's

altitude. The vertical profile of the intruder is modeled such that it is equally likely that

the intruder will level off at any altitude within 10,000 feet of its initial descent point.

Thus, a conflict may exist (the intruder continues to descend into the host) or a conflict

may not exist (the intruder levels off safely above the host). The situation is depicted in

Figure 7-5a.

In the intent case, datalinked information from the intruder indicates that it will

continue its descent at 1000 feet per minute through the host aircraft's altitude (Figure 7-

5b). For simplicity, it is assumed here that the aircraft maintains this descent rate

perfectly. However, there may likely be variability in the descent rate as pointed out by

Paielli and Erzberger [1999]. Fortunately, the Monte Carlo method presented in this

thesis could very easily handle this additional parameter without much additional

complexity or loss of computational performance.
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Figure 7-5: Vertical Conflict Examples

SOC curves for both cases are plotted in Figure 7-6. The assumed resolution

maneuver is a 5 second delay when the conflict alert occurs, followed by a 1000 feet per

minute climb. Variability in these response parameters could be added to the analysis as
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well, but are not included here for simplicity. The intent case SOC curve is shown by

the solid line which happens to follow along the y-axis; the SOC curve for the baseline

case is shown by the dashed line. Operating points for each case are shown in terms of

the time at which the conflict alert occurs in increments of 10 seconds relative to the time

to Closest Point of Approach (CPA) (assuming a straight line projection of the current

velocity vector).
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Figure 7-6: SOC Comparison of Baseline vs. Intent Cases

The SOC curve in Figure 7-6 shows that essentially an ideal alerting decision

could be made in the intent case provided that the intended path was indeed followed by

the intruder aircraft. By alerting at any time prior to 140 seconds before CPA, the host

aircraft could avoid a protected zone violation with approximately 100% confidence
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{ P(SA) = 1.0 }. Simultaneously, because the uncertainties in this case are relatively

limited, the probability of false alarms is approximately 0. Alerting with less than 140

seconds to CPA reduces the probability of a successful alert as shown.

In the baseline case, there is a possibility of the intruder aircraft leveling off above

the host aircraft. Thus, a climbing resolution maneuver may actually induce a conflict

that would not otherwise have occurred. The net effect is an increase in the probability of

a false alarm (a conflict would not have occurred) and a decrease in the probability of a

successful alert (the avoidance maneuver induces a conflict). As a result, the

performance of an alerting system in the baseline case would be lower than in the intent

case.

Notice that the baseline SOC curve shows that the successful alert probability,

P(SA), cannot be increased beyond approximately 0.8 without greatly increasing the

false alarm probability. Assuming that the intentions of the intruder aircraft were not

known, this example shows the difficulty placed on the alerting system designer to

develop a suitable threshold for this type of encounter. A viable option would be to

examine a more aggressive climb maneuver, or else look into a different avoidance

option all together. Figure 7-7 shows the SOC curves for a 1000 feet per minute descent

and a 30 ° turn avoidance maneuvers. The climb maneuver from the previous figure is

redrawn for comparison.

The advantage of utilizing a descent or turn maneuver in this particular encounter

situation is obvious from the SOC diagram: Both these maneuvers allow for a threshold

setting that is more ideal than the original climb maneuver (curves are closer to the ideal

position of P(FA) = O, P(SA) = 1). In addition, they also allow for the alert to be

delayed longer before action is required. For example, the plots indicate that a descent
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maneuver can be delayed until 80 seconds to CPA before a large drop off in P(SA) is

experienced. For the turn maneuver the delay can be as long as 100 seconds prior to

CPA. In comparison, the climb option requires the alert to be given much earlier (140

seconds to CPA) if P(SA) is to be kept above 0.8. In this situation, the longer the delay,

the better since the intruder aircraft may level off in altitude and an alert would never be

needed.

80 s

100 s s

0.8

<
0O
v

13-

0.7

0.6

0.5

0.4

0.3

140 s

Climb 1000 ft/min

Descend 1000 ft/min

Turn 30 deg

0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

P(FA)

Figure 7-7: SOC Comparison of Climb, Descent, and Turn Maneuvers

The results shown in Figure 7-7 are very interesting when examined from the

perspective of uncertainties. Maneuvers which deviate away from regions of high

uncertainty will allow for increased alerting performance. In essence, the outcome of the
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conflict will become more certain. For example, the descending option allows the host

aircraft to move away from the possible regions of airspace that might be occupied in the

future by the intruder aircraft. As a result, the outcome of a possible conflict is more

certain. The same is true with regard tO the turning maneuver. By utilizing a horizontal

escape maneuver, the host aircraft is removing itself from the major source of uncertainty

(i.e. the intruder leveling off) that is involved in the encounter. The results help

substantiate the desire to include horizontal resolution advisories in new versions of

conflict avoidance systems.

7.3 Summary

The case studies presented in this chapter demonstrate the utility of the

probabilistic methodology to handle both simple and complex encounter situations. The

examples showed how intent information could be used to improve the quality of the

conflict detection problem by increasing the prediction accuracy. Both probability

contour maps and SOC curves were used in presenting the results.
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Chapter 8

A Probabilistic Real-Time Alerting Probe

The previous chapters of this thesis have detailed most of the theoretical and

computational issues of analyzing conflicts using the probabilistic approach. Its uses as

an evaluative tool to investigate conflict scenarios have been shown with examples from

the last chapter. Now this chapter will describe taking probability analysis one step

further to the development of a real-time alerting probe. The first section will explain the

rationale behind the endeavor and the next section will describe the most recent update of

the logic to run Monte Carlo simulations concurrently with the real-time updates of

aircraft state and intent information. Finally, the advantages and disadvantages behind

this work will be discussed.

8.1 Alerting Probe Concept

In order to better understand the potential advantages and disadvantages of

probabilistic threshold criteria, a prototype alerting logic was developed based on the

concept of probabilistic conflict calculations discussed in the previous chapters. The

basis for the logic follows very much in line with the concepts developed for the SOC

curves (explained in Section 2.6) using P(FA) and P(SA) and the direct approach of

Chapter 5.

The design of the prototype alerting system was guided in part by NASA

requirements for their experiments in their Advanced 747-400 Full Motion Simulator as

well as their less complicated part-task simulators. The logic was tailored to an airborne
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systemwhereconflictswereexpectedto beresolvedprimarily on theflight deck, though

theconceptcouldbeextendedto aground-basedsystemto aid ATC. The first prototype

assumedonly thatcurrentstateinformation(position,speed,andheading)wasavailable

throughinter-aircraftdatalinksuchasfrom AutomaticDependentSurveillance-Broadcast

(ADS-B). Thealertingsystemwasspecificallydesignedto provideamplewarningtime

sothat strategicmaneuverscouldbeexaminedandcoordinationbetweenflight crews

could becarriedout.

A multi-stagedthresholdapproachwasutilized to provideaseriesof alertsto

indicatetrendsin conflict hazard.This approachallowedthemeansof implementingthe

alert to be tailoredto the levelof threat. Low probabilitythreatsresultedin relatively

passivealertssuchaschangingthecolor of a traffic symbol. High probability,urgent

threatsproducedauralwarningsto activelyinform thepilots orcontrollersof theconflict.

The multi-stagedapproachis shownin theschematicdiagramof Figure8-1.

Threestages(marked1, 2, and3) producedchangesin thetraffic displaysymbologyin

thecockpit of thehostaircraft. As implemented,theoutermostthresholdprovidedan

initial indicationof potentialthreatmorethan10minutesinto thefuture andup to 200

nauticalmilesaway. In theNASA 747-400simulator,ahollow traffic symbolon the

mapdisplaywould changecolor whenthefirst thresholdwasexceededandtheflight

crewwasexpectedto initiateverbalcommunicationwith the intruding aircraft in an

effort to coordinatearesolution. If theencountercontinued,anadditionalstagewould

inform thecrewof theheighteningthreatby filling in thetraffic symbologyon themap

display. At stage3, anauralAlert ZoneTransgression(AZT) wasprovidedto theflight

crew indicatingthatactionmustbetakento resolvetheconflict. At this point, therewas

still ampletimeto coordinateresolutionwith otheraircraft. If theconflict continued
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without resolution,afourth levelof alertcalledtheAuthorityTransition(AT) would

informATC to takecontrolovertheconflict situation.

Authority lTransition

AT 3

/ in}rude: /

Protected Zone I @(,5 nmi radius) Other Aircraft

In Vicinity

Figure 8-1: Multi-Stage Alerting Probe Concept

The prototype alerting logic was overlaid on top of the current TCAS logic which

was not modified and kept in the simulation setup as an independent, final warning

system. But because the alerting thresholds on the present TCAS 6.04A version are

based on limited variables (range and closure rate), TCAS cannot accurately predict

whether a conflict will occur beyond a few minutes. TCAS can track traffic within a

range of 40 nautical miles and its earliest alert can be triggered approximately 1 minute

prior to the projected closest point of approach [RTCA, 1983; Nordwall, 1997].

The newest version of TCAS (v7.0) became available in 1999, and increased the

range to 100 nautical miles using ADS-B via mode-S to transmit additional position,

heading, and vertical speed information [Klass, 1998]. The prototype alerting system
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could alsobeexpectedto utilize this sameaircraftstatedatato estimatefuture

trajectories.

Additional requestsby NASA requiredthealertingprobebeableto handle

varioustypesintent information(i.e. nextwaypoints,commandedheadings,commanded

altitudes)if madeavailable. Thedifferencein alertingthresholdswith andwithout intent

canbesignificantaswasshownin theexampleapplicationsof Chapter7. The

availabilityof intentallows for themoreaccuratepredictionof futureaircraft statesand

thusimprovetheoutcomeof thealertingprocess.

8.2 Prototype Alerting System

The ability to change the parameters of the trajectory model becomes important

when intent information is to be considered in the probability computations. Depending

On the type of intent information available, the parameters need to be reflected in the

trajectory model to reduce errors in the estimates of conflict as explained in Chapters 4

and 5 (W = T). Also, if the intent of an aircraft changes, the trajectory model needs to

adapt to the new information in order to determine possible conflicts along the new path.

In response to new directives within NASA to explore the use of intent

information in conflict detection and resolution, a new alerting logic was necessary to

accommodate their experimental requirements. A new setup was needed to handle the

various levels of intent information, if available, and also adjust dynamically to changes

in that information.

Utilizing the propagation method discussed in Section 6.2, specifically that shown

in Figure 6-6c, a new alerting system was devised based on running Monte Carlo

simulations in near real-time flight. Aircraft state and intent information are passed to the
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MonteCarlosimulationengineto beprocessed,thenthehazardlevelbasedon the

conflict probabilities{ P(FA) and P(SA) } is returned after computation is completed.

Additional information regarding possible avoidance options and the location of the

closest point of approach (assuming straight line extrapolation of the current velocity

vectors) were also computed by the alerting logic at the request of NASA. The structure

is shown in Figure 8-2.

AIRCRAFT

Cockpit Display

SDHM _237_

T.L xl ,,

0 _, ,__G
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• ...
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Aircraft States

ALERTING LOGIC

Intent Information

I Output to Cockpit

• Hazard Level

• Avoidance Options

• Closest Point of Approach

Probabilistic Monte Carlo

Simulations of Future Trajectories

t .... 1--

Ale_ing Thresholds

• P(FA)

• P(SA)

Figure 8-2: Prototype Alerting System Based on Real-Time Monte Carlo

Calculations

Currently, the system handles intent information of 4 types: only current state and

derivative information, future 3-D positional targets (waypoints, top and bottom of climb

and descent), target headings, and target altitudes. These forms were chosen to satisfy

requirements for experiments to be conducted by NASA.
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This setupis flexible suchthat theparametersof thetrajectorymodelsmaybe

adjustedaccordingto the intentinformationprovided(W = T). If intent is available,the

alertinglogic developsthestatetrajectorybasedon thatinformation. If thereis no

informationon intent, thenthelogic assumesapossibility of thesurroundingaircraft

deviatingfrom their currenttrack. Thepremiseis similar to theresultsshownback in

Figures7-1and7-2. In theformercase,theintentof intruding aircraft is to maintainits

currentheadingresultingin avery long, narrowregionof highconflict probability. In

the lattercase,the intruderaircraft is modeledwith thepossibilityof deviatingfrom its

currenttrack whichresultsin awider spreadof theprobabilitycontours.

8.3 The Alerting Thresholds

In order to satisfy the requirements set forth by NASA, the prototype alerting

system uses four stages of alert as shown in Figure 8-1. The first three stages produce

alerts in the cockpit that are intended to aid the flight crew in resolving the conflict before

tactical maneuvering is required. At the fourth stage, ATC is notified to issue commands

=to provide traffic separation. To set the conditions at which these stages are triggered, it

is necessary to examine the tradeoffs between P(FA) and P(SA). This requires

balancing the likelihood of a conflict against the ability of the host aircraft to avoid a

conflict. Since P(SA) is specific to different avoidance options, five standard conflict

resolution maneuvers were considered:

1) Left Heading Change of 30 °

2) Right Heading Change of 30 °

3) Climb or Descent of 2000 ft/min

4) Speed Increase of 50 kts

5) Speed Decrease of 50 kts
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Thesemaneuversserveasbenchmarksfor estimatingtheability of thehost

aircraft to avoidaconflict. Whentheintruderis far from thehostaircraft,anyof these

five maneuverscouldbeusedto resolvethecQnflict. As theintrudernearsthehost

aircraft,someof thesemaneuversmayno longerprovidetherequiredseparationbetween

aircraft. Thepremisebehindthealertinglogic is thatif a sufficientnumberof these

maneuversarestill availableto thepilot, thealertcanbedelayed.Whenthepilot's

optionsbeginto disappear,analertshouldbe issued.Theconceptis illustratedin Figure

8-3.

As shownin thefigure, initially thehazard(e.g.intruderaircraft) is sufficiently

far awaythatleft andfight turnsandclimb anddescentmaneuverscaneasilyavoidthe

hazard(Figure8-3a). As thehazardclosesin on thehostaircraft (Figure8-3b),the

optionsto resolvetheconflictwill diminish asdifferentavoidancemaneuverscanno

longersafelyableto avoidtheconflict. As shownin Figure8-3b,thefight turnmaneuver

is depictasan ineffectiveoptionto safelyavoidthe incomingintruder.
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a) Avoidance Maneuvers Still Available

b) Avoidance Maneuvers Begin to Diminish

Figure 8-3: Loss of Available Avoidance Options

A maneuver was defined to be available to the host aircraft if, by performing the

maneuver, the probability of a conflict was reduced to less than 0.05, i.e. P(SA) > 0.95.

The five maneuver options listed above included the probabilistic response time depicted

earlier in Figure 6.3 (with a mean latency of 1 minute). Thus, when a maneuver was
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deemedto benotavailable,safeseparationcouldstill beachievedif thepilot reacted

morequickly or moreaggressivelythanassumedin themodel.

Duringactualsimulatorruns,the logic would determinethenumberof avoidance

maneuversremainingor available,N, to resolve a conflict with the intruder. The latest

version of the alert logic computed these values in near real-time using Monte Carlo

simulation during runtime. The logic would compute P(FA) from P(C)

{ P(FA) = 1 - P(C) } and also the various values of P(SA) for the five standard

avoidance options. By comparing N with P(FA), the appropriate alert stage was defined

as shown in Table 8-1.

The leftmost column of Table 8-1 shows the probability of a conflict if the host

aircraft continues along its current trajectory. This assumes that the intruder's trajectory

can be represented by the model discussed earlier. The rightmost column shows P(FA),

which as discussed earlier is related to PN(C) by Equation 2-2. The other columns

indicate the defined alert stages as a function of N. Generally, the more options

available to the pilot, the lower the alert stage. For example, if P(FA) is 0.35 and there

are two avoidance maneuvers available, then the alert stage is 2. If P(FA) drops below

0.3 or if N is reduced to one, then the alert stage increases to 3. If P(FA) drops below

0.1, then the AT stage is triggered.

161



Table 8-1: Alert Level Classification

P_(C)

0.0 - 0.1

0.1 -0.2

0.2 - 0.3

0.3 - 0.4

0.4 - 0.5

0.5 - 0.6

0.6 - O.7

0.7 - 0.8

0.8 - 0.9

0.9- 1.0

Number of Avoidance Maneuvers Remaining, N

One TwoNone

1

1

2

2

3

3

AT

AT

AT

1

1

1

2

2

3

3

3

AT

1

1

2

2

3

3

AT

Three +

1

1

2

2

3

AT

P( FA)

0.9- 1.0

0.8 -0.9

0.7 - 0.8

0.6 - 0.7

0.5 - 0.6

0.4 - 0.5

O.3 - 0.4

0.2 - 0.3

0.1 -0.2

0.0- 0.1

8.4 Evaluation of Prototype System

To better understand the underlying design process, the thresholds from Table 8-1

can be mapped into SOC curves. Figure 8-4 shows SOC curves for two co-altitude

aircraft on a collision course along flight paths at right angles to one another. SOC

curves corresponding to each of the five resolution maneuver options are shown.
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Figure 8-4: SOC Curve for Aircraft on Perpendicular Tracks

When the intruder is far from the host aircraft, the situation maps into the upper

fight of the plot: it is likely that a conflict will not actually occur { P(FA) --_ 1 } and it is

likely that any avoidance action would resolve the situation { P(SA) for each of the five

avoidance maneuvers is 1 }. Data for Figure 8-4 were not obtained beyond 200 nautical,

and thus the SOC curves in the figure do not extend all the way to the upper fight corner.

As the intruder continues on a collision course, it becomes more clear that a

conflict will occur: P(FA) decreases and the situation moves from right to left along the

curves. Thus, P(FA) is related to the distance between aircraft and to the time before

closest point of approach. As P(FA) decreases, P(SA) also decreases in differing

amounts according to the different SOC curves. The effectiveness of a given maneuver
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dependsonhow slowly its P(SA) decreases. When a curve's value of P(SA) drops

below 0.95, the corresponding avoidance maneuver is no longer available. Thus, as the

situation progresses to the left in Figure 8-4, the different avoidance maneuvers become

unavailable, in order, from speed changes to turns and finally to climb or descent. Thus,

the SOC curves show that for this case, vertical maneuvers are the most effective.

The first maneuvers to become unavailable are the speed change maneuvers, at

P(FA) of approximately 0.9. This is because large speed changes are generally required

to resolve conflicts in the time scales under consideration.

Until P(FA) drops below approximately 0.25, turns and climb/descent avoidance

maneuvers will still provide the required separation. At approximately P(FA) = 0.25,

however, a 30 ° left turn maneuver is no longer an option. At approximately

P(FA) = 0.2, the 30 ° right turn is also no longer an option. When P(FA) reaches

approximately 0.1, the climb/descend options become unavailable.

At a given value of P(FA), N corresponds to the number of SOC curves that

have values above P(SA) = 0.95. Figure 8-4 also shows when the four alert stages are

triggered as a function of P(FA). Cross-referencing with Table 8-1, stage 1 is triggered

when N is three or more and P(FA) drops to 0.6. Stage 2 is triggered when P(FA)

drops to 0.4 and Stage 3 is triggered when N drops to two. Finally, the AT stage is

triggered when N drops to zero. Although Figure 8-4 shows SOC curves for a direct

collision between two aircraft on perpendicular flight paths, other geometries produced

similar patterns.

The five avoidance maneuvers used here are intended to represent strategic

maneuver limits. It should be reiterated that a large response time (mean = 1 min.) is

modeled in the avoidance maneuvers (see Figure 6-3) and that when N is zero, the host
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aircraftcanstill maneuveroutof theconflict. A moreaggressive,tacticalmaneuversuch

asa45° headingturnor a combinedclimbingturn maystill beavailablewhenthefive

assumedstrategicmaneuversarenot.

Furtherexaminationof theSOCcurvesshowthatspeedchangesmakeonly a

limited contributionto theprototypelogic. In manycases,aspeedchangeof greaterthan

50knotsis requiredfor adequateseparationwith 95%confidence.As canbe seenfrom

Figure8-4, theSOCcurvesfor thespeedmaneuversdeviateonly slightly from the

diagonal.Thus,it is difficult to providesuccessful,necessaryalertswith speedcontrol

alone. Similardifficulties with relyingonspeedcontrolarementionedby Krozel, et al.

[1996]usingamuchdifferentconflict analysismethodbasedonoptimalcontroltheory.

Figure 8-5showstheobservedtimesin whichthealertstagesweretriggeredfor

theperpendicularcrossingcaseof two aircraftonadirectcollision course.This is the

samesituationdescribedby theSOCcurvesin Figure8-4. Alert stage1is triggered12.3

minutesprior to thetimeof ClosestPointof Approach(CPA). Stages2 and3 are

triggeredat approximately8.And .8 minutesto CPA,respectively.If theconflict isnot

resolved,ATC is notified to takeoverauthority(attheAT stage)at 3.3 minutesto CPA.

Finally, TCAS producesatraffic advisoryffA) atapproximately45 secondsanda

resolutionadvisory(RA) at 35secondsto CPA.
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Figure 8-5: Alert Time Line: Direct Collision (90 ° Crossing Angle)

Figure 8-6 shows a slight different encounter in which two aircraft are not on a

direct collision course but will pass within 6 nautical miles of one another. Stage 1 is

triggered 6.5 minutes before CPA, and stage 2 is triggered 2.2 minutes before CPA. A

TCAS TA is also generated at approximately 30 seconds before CPA. When the traffic

passes the host aircraft, the alert stages gradually decrease. Thus, the logic increases the

alert stage as the potential for a conflict rises and reduces the alert stage as it becomes

less likely that the intruder could turn and cause a conflict.

166



6 nmi Miss

CPA

TCAS TA ]

6.5 rain. 2.2 0.5 |l +0.5 rain.
0.2J I

0.0

Time to Closest Point of Approach (CPA)

Figure 8-6: Alert Time Line: 6 nmi Minimum Separation (90 ° Crossing Angle)

8.5 Simulation Studies

At the NASA Ames Research Center, the prototype alerting logic was

incorporated in several aircraft-ATC simulator experiments as part of a study on pilot

decision-making aids for new Air Traffic Management environments [Johnson et al.,

1997; Cashion et al. 1997; Battiste and Johnson, 1998; Cashion and Lozito, 1999; Dunbar

et al., 1999; Johnson et al., 1999]. In these studies, enroute conflicts were scripted to

examine pilot response and to exercise the alerting logic.

In operation, the alerting logic was used to trigger the four stages of alerts

discussed earlier. Additionally, the probability data were used in one study to determine

the magnitude of maneuvering required to resolve conflicts at a specified level of

confidence. The pilots in the study were given an interactive tool to explore different

maneuvering possibilities. These maneuvers were compared against the probability data

to determine whether the conflict would be resolved with 95% confidence. The cockpit
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displaythenindicatedto thepilots whethertheproposedmaneuverwaslikely to be

successful.

Preliminaryresultsfrom theNASA studiesshowthat thepilots couldsuccessfully

resolveconflict without ATC guidancein mostcases.AT alert stageswereonly

observedin scenarioswheretheintrudingaircraftwaspurposelydivertedtowardthehost

aircraftatcloseproximity. However,a morecompleteanalysisis requiredto morefully

evaluatethealertinglogic andto determinethepotentialimpactof theairborneconflict

resolutionin air traffic management.Additionalstudiesarenow underway to exercise

thelogic utilizing thevariousintentinformationthatmight beavailableto aircraft in the

future.

Early testrunsfrom theintentstudiesshowedsomeinterestingresults. With

intent,aircraftcouldbeallowedto bespacedin relativelycloseproximity of oneotheras

shownin theexampleof Figure8-7. Herethetwo aircraftareonparalleltracksand

indicatinganintentto maintainthesameheading.Suchintentallows theaircraft to be

spacedashortdistanceapartsincethealertinglogic is expectingtheintent to be

followed. However,blundersor suddencoursechangesby oneof theaircraftwould

resultin animmediatehazardsituationwith little timefor appropriateactionon thepart

of theotheraircraft. Theoriginal intentinformationhassuddenlybecomea detrimentto

theoverall safetyof thesystem.Thusin orderto utilize intenteffectivelyandsafely,

someuseof conformancecheckto maintainthe intent is necessarysothatW = T. If the

intentis to bechanged,it shouldalsobeclearedfirst with thealertinglogic sothatthere
/-

is no disparity between W and T, or a conflict in the new course.
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Intent Path

Intent Path

Figure 8-7: Error in Intent Information

8.6 Discussion

The Monte Carlo approach used in the alerting logic has the advantage that it can

handle complex, 3-D encounters with complicated error distributions specific to each

conflict situation. It uses whatever information is available to describe the conflict and

makes a direct prediction of the alerting outcome {i.e. P(FA), P(SA) }based on that

information. If a change in the working model (W) is required, such as a change in flight

plans, the Monte Carlo simulations should reflect the new updates (W = T).

However, there are some limitations that should be considered when utilizing the

Monte Carlo approach presented here. A sufficient amount of processing power is

required to perform the vast number of Monte Carlo simulations at any instant in time.

The methodology presented in Section 6.2 has allowed a relatively efficient way of

computing these probabilities in near real-time (on the order of a quarter of second for

each pair of aircraft). As the number of aircraft increases in the vicinity, the longer it will

take to compute the desired probabilistic values.

Another consideration involves the scope of the conflict. The resolution

maneuvers used to develop the alerting logic are based on the immediate problem of

avoiding a conflict and do not consider the additional maneuvering required to return to
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theoriginal flight path. Thus,the logic doesnot incorporateissuessuchasincreasedfuel

burn or flight time in thedecisionto alert. It maybenecessaryto incorporatecost-based

metricsinto thealertinglogic asefficiencybecomesan increasedpriority. This mightbe

achieved,for example,by weightingavoidancemaneuveroptionsby theadditionalcost

of deviationeachoptionwould incur.

Finally, centralizedtraffic managementissueshavebeenignored. Because,as

assumedin theNASA experimentalstudies,pilotshaveinitial responsibilityfor traffic

separation,groundcontrollerscouldhavedifficulty whensuddenlypresentedwith a

conflict thatwasnotresolvedby theflight crews. Additional conflict detectionand

resolutionaidsmustbeprovidedfor groundcontrollersto enablethemto return to the

traffic managementloopandhandletraffic oncetheyarealertedto theconflict.

Alternatively,it maybemoreappropriatefor all conflict detectionandresolution

activitiesto beperformedon theground. In eithercase,thedesignapproachpresentedin

this thesiscouldbeappliedin anair,ground,or mixedmodeof operationto develop

futurealertingsystems.

8.7 Summary

In this chapter, a conflict alerting probe was developed from the concepts

explained in the previous chapters. It is a novel approach based on the utility of near

real-time Monte Carlo simulations to predict conflicts and alerting performance. The

thresholds are based on the concepts of the SOC methodology first presented by Kuchar

[1995, 1996] and entails modeling uncertainties directly into the aircraft trajectory model.

Some preliminary results for some of the NASA studies are discussed as well as some the

advantages and disadvantages of the approach.
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Chapter 9

Summary and Conclusions

9.1 Summary

9.1.1 Review of Alerting Systems and Alerting Performance

A brief overview of the state-space approach to describing alerting systems was

given to provide a foundation for further discussion into the problems associated with

alerting system design and performance. Terms such as false alarms, missed detections,

and correct detections were presented in the realm of state-space. The problem of

conflict detection and resolution was formally introduced, and the importance of the

tradeoff between the different performance parameters (e.g. false alarms, missed

detections) was discussed. A review of System Operating Characteristic (SOC) analysis

was also given.

9.1.2 Survey of Alerting Approaches

A survey of different conflict alerting approaches was made to gain insight into

the problem of designing a conflict probe to handle complex encounters (3-D, multi-

aircraft, intent information, uncertainties). It was found that a large variety of methods

existed in literature with no single, apparent underlying theme to drive designs.

However, there was a prevalence of an iterative, ad hoc approach using test scenarios to

set the threshold parameters. Also, three major trajectory propagation methods for

predicting and resolving conflicts were identified: single path, worst case, and

probabilistic.
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9.1.3 A Unified Approach for Improving Alerting Performance

The alerting problem was recast as a prediction problem in the presence of

uncertainties. The performance measures often used to gauge and set threshold

parameters rely on the accuracy of the prediction. The importance of trajectory modeling

in the prediction process was emphasized and errors in the model were shown to reduce

prediction accuracy. A unified approach to improving alerting performance was stated

which evolved around increasing prediction accuracy through better trajectory modeling

(W _ T, T _ W) and reducing inherent uncertainties.

9.1.4 Probabilistic Influence in Alerting System Design

The iterative, ad hoc approach to alerting threshold design was revisited from a

probabilistic standpoint. It was shown that probabilistic concepts of performance and

uncertainties were embedded within this design process of setting threshold metric

parameters. Also, a new direct approach to alerting design was presented and shown be a

more compact method of estimating performance directly without the unnecessary step of

mapping back to a redundant set of threshold metrics. This new approach is based on

modeling all known information (including uncertainties and intent information) about

the encounter directly into the working trajectory model used by the alerting logic to

predict future aircraft positions. The result is a situation-specific design that is tailored to

each individual encounter and not compromised from a globally averaged threshold.

9.1.5 Methodology for Computing Conflict Probabilities

A method of computing the probabilistic parameters was presented using a Monte

Carlo simulation method. Uncertainties and intent information were modeled into the

aircraft trajectories to predict the likelihood of conflicts and avoidance options. A
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relativelysimpleideaof utilizing arelativeframecoordinatesystemallowedtheuseof

theMonteCarlosimulationsto beperformedin nearreal-time. The accuracyof the

computationswasdiscussedandappearsto bewithin thenecessaryscopefor use'in a

real-timeconflict alertingprobe. In addition,amethodto visualizetheconflict situation

throughtheuseof probability contourswaspresented.

9.1.6 Application of Methodology

The methodology developed in this thesis was utilized both as an analytical tool

and as the basis for a real-time conflict alerting probe.

9.1.6.1 Conflict Analysis Tool

Through the use of probability contour maps and SOC curves, the benefits of the

method was shown to be able to handled both simple and complex types of encounters

with relative ease. Examples were presented using intent information, various types of

uncertainties, and different resolution options, In one example, the merits of utilizing

horizontal maneuvering proved to be more effective than a climb maneuver in a certain

type of vertical encounter situation.

9.1.6.2 Real-Time Conflict Probe

Several versions of a real-time conflict alerting probe based on probabilistic

thresholds were developed for use in NASA Ames Research Center simulator facilities.

The latest version employs direct Monte Carlo simulations run in real-time and can

include information on certain types of intent if available.
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9.2 Conclusions

.

The contributions from this thesis work are as follows:

The importance of uncertainties in the alerting design process was identified. Much

of the work discussed in this thesis evolved from the notion that uncertainties must be

dealt with at some point within the alerting system. Without uncertainties in a

conflict situation, a perfect alerting threshold could be designed. It is because of

uncertainties and errors in prediction that make the conflict detection and resolution

problem difficult.

2. A unifying concept for improving alerting system performance was developed based

on insight from recasting the problem as decision-making in the presence of

uncertainties. The foundation is based on the realization that performance metrics

such as false alarm rate and missed detections are measures of prediction accuracy.

Thus to improve performance requires increasing prediction accuracy since the

performance metrics are based on obtaining a correct prediction of a future hazard or

the ability to avoid it. The result led to the concept of reducing modeling errors (W -

T) and reducing inherent uncertainties (make future outcomes more deterministic).

Common methods used to improve alerting performance (e.g. delaying alerts,

including intent information, enforcing flight restrictions, conformance monitoring)

were shown to belong in one of these two categories.

3. A probabilistic connection to alerting design was shown to exist in the common ad

hoc approach of setting threshold parameters. Uncertainties in the aircraft trajectories

are injected into the design by use of the test simulation scenarios. The outcome of

the simulations are probabilistic measures of performance which end up driving the

final threshold settings. The result is that the thresholds are really a simplified
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mapping to probabilistic performance measures such as P(FA) and P(SA). The

iterative feedback of the ad hoc approach explains the ability to utilize various

combinations of metric parameters by different alerting logics.

Global versus situation-specific designs were identified. Using statistical

computations, it was shown how global designs were a compromise between more

situation-specific designs. The analysis provided an explanation to past problems

encountered by current operational systems such as GPWS and TCAS. It is also the

rationale behind tailoring thresholds to individual encounter situations especially as

the complexity of the operating environment increases (multi-aircraft, 3-D

encounters).

A new direct approach was extended from previous work by Kuchar [1995, 1996]

where uncertainties and intent are modeled explicitly in the aircraft trajectory model

of the alerting logic. The method allows for a direct prediction of the performance

measures and is inherently situation-specific to each encounter scenario. Thresholds

can then be designed in the state-space of the performance measures {e.g. P(FA) and

P(SA) } with the help of SOC plots.

A methodology was developed to compute the probabilistic values in near real-time

setting up the possibility for rapid analysis and also for conflict probing.

Example problems were shown utilizing probability contour plots and SOC analysis.

These examples showed the usefulness and capability of the method to handle both

simple and complex encounter situations with relative ease. For instance, the benefit

of intent information was shown in one example and the benefit of horizontal

avoidance maneuvering in another.
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, The actual implementation of a prototype conflict alerting probe for flight simulation

studies was developed for experimental use at MIT and NASA Ames Research

Center facilities. The logic is based on near real-time Monte Carlo predictions of

conflict and conflict avoidance. The logic can handle complex multi-aircraft, multi-

intent, 3-D encounters.
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Appendix A

A Review of Conflict Detection and Resolution

Modeling Methods

A number of methods have been proposed to automate air traffic conflict

detection and resolution, but there have been little cohesive discussion or comparative

evaluation of differing approaches. This appendix presents a survey of 62 recent

methods, several of which are currently in use or under operational evaluation. This is by

no means an exhaustive list, but it is believed to encompass a majority of the recent

approaches to the problem. The taxonomy includes: method of dynamic state

propagation, dimensions of state information, conflict detection threshold, conflict

resolution method, maneuvering dimensions, and management of multiple aircraft

conflicts.

Nine of the models that were examined are existing operational systems in use or

which have been evaluated in the field: Airborne Information for Lateral Spacing (AILS)

[Waller and Scanlon, 1996], Center/TRACON Automation System (CTAS) [Isaacson

and Erzberger, 1997], Ground Proximity Warning System (GPWS) [RTCA, 1976] and

the recent Enhanced version (EGPWS) [Bateman 1999], Precision Runway Monitor

(PRM) [FAA, 1991], Traffic Alert and Collision Avoidance System (TCAS) [RTCA,

1983], Traffic and Collision Alert Device (TCAD) [Ryan and Brodegard, 1997], User

Request Evaluation Tool (URET) [Brudnicki et al., 1997], and a prototype conflict

detection system for the Cargo Airline Association [Kelly, 1999]. The remaining

approaches range from abstract concepts to prototype conflict warning systems being
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evaluatedor usedin laboratories.Fiveof themodelsweredevelopedfor robotic,

automobile,or navalapplications[Coenenet al., 1989;Iijima et al., 1991;Taylor, 1990;

ChakravarthyandGhose,1998;Lachner,1997],but arestill applicableto aviation.

To provideaconsistentbasisuponwhichto describetheapproaches,eachoneis

classifiedby themannerin which it is explicitly describedin its reference.An approach

definedhereto addressonly horizontalconflicts, for instance,couldpotentially be

extendedto work in 3-D (andtheneedfor suchanextensionmay bementionedin the

reference),but suchanadditionwasnotspecificallydescribedin thereference.As

anotherexample,if amodelcomputesaircraftmisseddistancebut doesnot definean

explicit conflict detectionthreshold,themodelis notclassifiedasproviding conflict

detectioneventhoughthemodelcouldbeadaptedto performsuchatask.

A.1 State Propagation

Because conflict detection and resolution can only be as reliable as the ability of

the model to predict the future, the most important difference between modeling

approaches involves the method by which the current states are projected into the future

Three fundamental extrapolation methods have been identified: single path, worst case,

and probabilistic.

i

In the single path approach, the current states are projected into the future along a

single trajectory without direct consideration of uncertainties. An example would be

extrapolating the aircraft's position based on its Current velocity vector (Figure A-ia).

The single path projection method is straightforward and provides a best estimate of '

where the aircraft will be based on the current state information. In situations where

aircraft trajectories are very predictable (such as when projecting only a few seconds into

the future), a single path model may be quite accurate. Single path projections, however,
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donot directly accountfor thepossibilitythatanaircraftmaynotbehaveasexpected- a

factorthat isespeciallyimportantin longertermconflict prediction. Generally,this

uncertaintyis managedby introducingasafetybuffer, minimummissdistance,or timeto

closestpoint of approachthresholdatwhich point aconflict will bedetected.

4- 4-J_

Single Path Worst case Probabilistic
(a) (b) (c)

Figure A-l: Propagation Methods

The other extreme of dynamic modeling is to examine a worst case projection.

Here, it is assumed that an aircraft will perform any of a range of maneuvers. If any one

of these maneuvers could result in a loss of minimum separation, then a conflict is

declared. The result is a swath of potential trajectories which is monitored to detect

conflicts with other aircraft (Figure A-lb). Worst case approaches are conservative in

that they can trigger alerts whenever there is any possibility of a conflict within the

definition of the worst case trajectory model. If such conflict inducing maneuvers are

unlikely, protecting against them may severely reduce overall traffic capacity due to a

high false alert rate. Accordingly, the worst case approach may be appropriate when it is

desirable to determine if a conflict is possible, or for air traffic concepts in which aircraft

are procedurallY constrained to remain within a given maneuvering corridor. Each
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corridor thenbecomestheboundaryof theworst-caseaircraft trajectories,andconflicts

canbepredictedbasedsimplyon whethercorridorsintersectat thesamepoint in time.

In theprobabilisticmethod,uncertaintiesin themodelareusedto developasetof

possiblefuturetrajectories,eachweightedby its probabilityof occurrence.Fore

example,adistributionof futureaircraftpositionscouldbeobtainedby modeling

uncertaintyin along-trackandcross-trackguidance(FigureA-lc). A probabilistic

approachprovidesanopportunityfor abalancebetweenrelying tooheavilyon aaircraft

adheringto a singletrajectoryversusrelying tooheavily thatanaircraftperformsworst

casemaneuvers.Theadvantageof aprobabilisticapproachis that decisionscanbemade

on thefundamentallikelihood of aconflict - safetyandfalsealarmratescanbeassessed

andconsidereddirectly. Theprobabilisticmethodis alsothemostgeneral- the single

pathandworstcasemodelscanbeconsideredsubsetsof probabilistictrajectories.The

singlepathtrajectorycorrespondsto acasein which theaircraftwill follow agiven (e.g.

maximumlikelihood) trajectorywith probability 1.0;theworstcasemodelis onein

which theaircraftwill follow anytrajectorywith equallikelihood. However,the logic

behindaprobability-basedsystemmaybedifficult to conveyto operators,possibly

reducingconfidencein their usage[Pritchett,1996].Theremayalsobedifficulties in

modelingtheprobabilitiesof thefuturetrajectorieswith whichaircraftmayfollow.

TablesA-l, A-2, andA-3 provideanorganizedlisting of the62 approach

methods.To conservespace,only thefirst authoris listedin caseswheremultiple

authorsarelistedonapublication. Thethreetablesaresegregatedby thepropagation

methodtaken: singlepath,worstcase,andprobabilistic. Five columnsareusedto

organizethemodels: StateDimensions,Conflict Detection,Conflict Resolution,

ResolutionManeuvers,andMultiple Conflicts.
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A.2 State Dimensions

The Dimensions column shows whether the state information used in the

approaches involves purely horizontal plan (H), vertical plane (V), or both (HV). The

majority of approaches cover either 3-D or the horizontal plane; only GPWS focuses

solely on the vertical plane. Some models may be easily extended to cover additional

dimensions than are shown here, but such extension is not explicitly described in the

reference.

A.3 Conflict Detection

The Detection column indicates (with a check mark) whether a modeling

approach explicitly defines when a conflict alert should be issued. Approaches that do

indicate an explicit threshold may provide valuable tools and metrics upon which conflict

detection decisions can be made, but do not precisely draw the line between predicted

conflict and non-conflict. Additionally, models shown to not provide conflict detection

may be primarily concerned with the resolution of the conflict rather than the in

determining when action should begin. Although developing conflict resolution methods

are important, at some point it will be necessary to define conflict detection thresholds

and examine the false alarm / missed detection tradeoff. Approaches that are shown to

provide conflict detection may use an extremely simple criterion (e.g. current range

between aircraft) to determine when a conflict exists or may use a more complex set of

threshold logic.
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A.4 Conflict Resolution

The Resolution column shows the method by which a solution to a conflict is

generated. Five categories are included here: Prescribed (P), Optimized (O), Force Field

(F), Manual (M), and no resolution (--).

Prescribed resolution maneuvers are fixed during system design based on a set of

predefined procedures. For example, GPWS issues a standard "PULL UP" warning

when a conflict with terrain exists. GPWS does not perform additional computation to

determine an optimal escape maneuver. AILS [Waller and Scanlon, 1996] and Carpenter

and Kuchar [1997] assume that a fixed climbing-turn maneuver is always performed to

avoid traffic on a parallel approach. Prescribed maneuvers may have the benefit that

operators can be trained to perform them reflexively. This may decrease response time

when a conflict is issued. However, prescribed maneuvers are, in general, less effective

than maneuvers that are computed in real-time since there is no opportunity to modify the

resolution maneuver (the maneuver is performed open-loop to some extent). In many

conflicts, it will be necessary to adapt the resolution maneuver to account for unexpected

events in the environment, or to reduce the aggressiveness of the maneuver should the

conflict be resolved more easily than first predicted.

Optimization approaches typically combine a kinematic model with a set of cost

metrics. An optimal resolution strategy is then determined by solving for the trajectories

with the lowest cost. TCAS, for example, searches through a set of potential climb or

descent maneuvers and selects the least-aggressive maneuver that provides adequate

protection [RTCA, 1983]. This requires the definition of appropriate cost functions -

typically projected separation, or fuel or time, but costs could also cover workload.

Developing cost functions may be fairly straightforward for economic values, but

192



difficult whenmodelinghumanutilities. Becausecurrentinterestin this field is generally

centeredonstrategicresolutionof conflictsbeforeimmediatetacticalevasionis required,

economiccostsandoperatorworkloadwill be importantto thesystemdesign.

Someof themodelsdenotedasusingoptimizedconflict resolutionapply

techniquessuchasgametheory,geneticalgorithms,expertsystems,or fuzzy controlto

theproblem. Expertsystemsuserule-basedmethodsto categorizeconflictsanddecide

whetherto alertand/orresolveaconflict. Thesemodelscanbecomplexandrequirea

largenumberof rulesto completelycoverall possibleencountersituations. Additionally,

it maybedifficult to certify thatthesystemwill alwaysoperateasintended,andthe

"experts"usedto developor train thesystemmayin factnot usethebeststrategyin

resolvingconflicts. However,therulebase,by design,maybeeasierfor ahumanto

understandor explainthananabstractmathematicalalgorithm.

Forcefield approachestreateachaircraftasachargedparticleandusemodified

electrostaticequationsto generateresolutionmaneuvers.Therepulsiveforcesbetween

aircraftareusedto definethemaneuvereachperformsto avoidacollision. A forcefield

method,while attractivein thesensethat aconflict resolutionis continuously available

using relatively simple equations, may have some pathologies that require additional

consideration before they can be used in operation. For example, force field methods

may assume that aircraft continuously maneuver in response to the changing force field,

or that aircraft can vary their speed over a wide range. This requires a high level of

guidance on the flight deck and increases complexity beyond issuing simple heading

vectors, for example. Several human-in-the-loop implementations of the force field

approach, however, have shown that the method can be effective if properly applied

[Duong and Hoffman, 1997; Hoekstra et al., 1998; Zeghal and Hoffman, 1999].
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Somemodelsallow theuserto generatepotentialconflict resolutionsolutionsand

obtainfeedbackasto whetherthetrial solutionis acceptable.Thesemodelsaredenoted

ashandlingaManualsolutionin thetable. Thebenefitof a manualsolution is thatit is

generallymoreflexible in thesensethatit isbasedonhumanintuition (using information

thatmaynot beavailableto theautomation).For example,weatherinformationthatis

not availableto theconflict detectionandresolutionsystemmaybe importantwhen

consideringaconflict resolutionmaneuver.Automated solutions that do not take

relevant environmental information into account will likely produce nuisance solutions

that the human finds unacceptable.

A .... in the Resolution column indicates that the model does not provide an

explicit output of an avoidance action or feedback on a user-defined trial solution. These

models perform conflict detection but are not designed to explicitly consider conflict

resolution. In some cases, successful conflict resolution is presumed (the focus of the

approach is only on detecting or counting conflicts).

A.5 Resolution Maneuvers

The Maneuvers column indicates what dimensions of resolution maneuvers are

allowed. Possible maneuver dimensions include Turns (T), Vertical maneuvers (V), and

Speed changes (S). The notation TV, for example, means that either turns or vertical

maneuvers may be performed (but not both simultaneously). In some cases, combined

maneuvers may be commanded or performed, indicated by cO. Thus C(TV), for

example, indicates that a simultaneous climbing or descending turn may be performed.

Generally, providing more maneuvering dimensions allows for a more efficient

solution to a conflict. However, it does place additional responsibility on the operator in
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thesensethatamorecomplexmaneuvermustbecontrolledandmonitored,possibly

increasingresponsetimeandworkload.

A.6 Multiple Conflicts

Finally, the Multiple column describes how the model handles more than two

traffic conflict simultaneously. This can take two forms: Pairwise (P), in which multiple

conflicts are addressed sequentially in pairs; and Global (G) in which the entire situations

is examined simultaneously.

In a realistic traffic environment, it will be necessary that a conflict detection and

resolution system be able to manage more than one conflict at a time. In a pairwise

approach, if one conflict solution induces a new conflict, the original solution may need

to be modified until a conflict-free solution is found. This is the approach taken by

TCAS, for example, and is effective but also could potentially fail in certain situations. A

global solution, while potentially more complex, may be more robust. For example,

consider the situation shown in Figure A-2. On the left, a pairwise solution is shown.

The aircraft on the left detects a conflict with a co-altitude threat at a certain preset time

before collision, and attempts to climb or descend. Neither solution is acceptable since it

results in a conflict with another aircraft. On the right, a global solution considers all

three threat aircraft simultaneously and determines that the climb or descent maneuver

must begin earlier than the baseline threshold time in order to safely resolve the conflict.

At the least, models should be examined in multi-aircraft situations to determine their

robustness to this type of problem.
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Figure A-2: Pairwise vs. Global Solution

A.7 Other Model Elements

In addition to the six factors used to distinguish between modeling approaches in

Tables A-l, A-2, and A-3, there are several other issues to be considered but are not fully

described here. These issues include specifically which current states and metrics are

used to make conflict detection and resolution decisions, how uncertainty is managed in

the model, and the degree to which the model assumes coordination between aircraft

involved in a conflict.

Consideration of the states that are used in conflict detection and resolution is

important because these states represent the means by which the system observes the

environment. Some approaches use a simplified set of states which reduces sensor

requirements, but increases the uncertainty in which the conflict detection and resolution

decisions can be made. Anadditional set of data that will be valuable in strategic conflict

detection is aircraft intent information such as a programmed flight plan. This

information can be used to better model the future trajectory of the aircraft, and thereby

be better able to make correct alerting decisions.
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Themannerin whichuncertaintiesaremanagedin thedesignof aconflict

detectionandresolutionsystemvarieswidely. Most approachesto theproblemcombine

theuncertaintiesinto aspatialsafetybuffer to reducemisseddetectionprobabilityand

alsoincorporatea look-aheadtimeboundaryto limit falsealarms.This providesfor a

reasonableaccommodationof uncertainties,but it maynotbeaseffectiveor accurateas

morecomplete,probabilistictrajectorymodels.

Coordinateconflict resolutionbetweenaircrafthastwo primary benefits.First,

therequiredmagnitudeof maneuveringcanbereducedwhenbothaircraftmaneuver

cooperativelyasopposedto thecasewhenonly oneaircraftmaneuvers.Second,

coordinationhelpsensurethataircraftdonot maneuverin adirectionthatcouldprolong

or intensifytheconflict. However,a systemdesignedassumingthatcoordinationwill

occurshouldalsobeevaluatedin casesin whichcoordinationis not carriedoutas

planned.This wouldprovidesomemeasureof therobustnessof thesystemto adatalink

failure or pilot error. For example,TCAS wasfoundto performpoorly in situationsin

which oneaircraftdid notrespondto therecommendedadvisory[Drumm, 1996]. In fact,

it wasdeemedunproductiveto analyzesuchencountersin depthsinceit wasfelt to

completelyovershadowanyotherfactorscontribuiingto poorperformance.However,if

suchsituationsdooccurin actualoperation,theproblemmustberesolvedelseit canonly

leadto devastatingconsequences.
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Table A-I: Single Path Trajectory Propagation

Model

Andrews

Chakravarthy

Tomlin

Irvine

Ota

Kosecka

Zeghal (1998)

Eby

Sridhar

Bateman (EGPWS)

Havel

Kelly

Ryan (TCAD)

RTCA (GPWS)

FAA (PRM)

Bilimoria

Burgess

Coenen

Oazit

Harper

Iijima

Burdun

Durand

Ford

Krozel

Love

Schild

RTCA (TCAS)

Hoekstra

Zeghal (1994)

Duong

Dimensions Detection Resolution Maneuvers Multiple

H -- 0 T P

H -- O C(ST) P

H -- O T G

HV -- O C(STV) P

HV -- O C(TV) G

H -- F C(ST) G

H -- F C(ST) G

HV -- F C(STV) G

H q _ -- P

HV q -- -- --

HV "4 __ __ p

HV q -- _ P

HV _/ -- -- P

V _/ P V --

H 4 P C(TV) P

HV 4 p STV P

H 4 O TV P

H 4 O ST P

H 4 O VT P

H 4 O C(ST) G

H 4 0 ST P

HV 4 O C(STV) V

HV 4 O T G

HV '/ O V P

HV 4 O STV P

HV 4 O TV P

HV 4 O C(TV) P

HV 4 0 V P

HV q F C(STV) P

HV 4 F C(STV) G

HV q M / F C(STV) P
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Table A-2: Worst Case Trajectory Propagation Methods

Model Dimensions Detection Resolution Maneuvers Multiple

Lachner

Ratcliffe

Shepard

Shewchun

Waller (AILS)

Vink

H -- O C(ST) P

HV 4 -- -- P

HV 4 _ -- P

I-IV "/ -- -- P

HV '/ P C(TV) P

HV 4 M C(STV) P

Table A-3: Probabilistic Trajectory Propagation Methods

Model Dimensions Detection Resolution Maneuvers Multiple

Heuvelink H -- -- -- P

Paielli H -- -- -- P

Taylor H -- -- -- P

Bakker HV -- -- -- P

Innocenti H -- F C(ST) G

Rome H 'J -- -- P

Warren H 4 __ __ p

Williams HV '] -- -- P

Carpenter H "] P C(TV) P

Prandini H ",/ O T P

Krozel I-IV _/ O STV P

von Viebahn HV '/ O TV P

Isaacson (CTAS) HV .4 M C(STV) P

McNally (CTAS) HV '/ M C(STV) P

Brudnicki (URET) HV 4 M C(STV) P

Yang HV 4 M C(STV) P
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Appendix B

Statistical Analysis of Global Distributions

The following will show the computations used to determine the descriptive

statistics of combining two probability distributions into one global distribution. The

results can then be extended to a combination of more than two distributions.

B.1 Statistics of Combining 2 Distributions

Let f(x) and fz(x) be two separate distributions from which to sample from.

2
The mean and variance of each function will be /_1, cy_ and /_2, ff2, respectively. Also,

the fraction of times each distribution is sampled will be denoted as a, and a z, and thus

the combined probability density function, f(x), will have a distribution of:

f(x) : all(x) + a2f2(x) (B.1)

a, + a z = 1 (B.2)

The expected value or mean, /_o, of this global distribution can be computed as follows:

_G = E[x]

: i; x::x) x
= I2 x[a_f(x) + a_L(x)]dx

= a,I 2 xf(x)dx + azl 2 xf2(x)dx

= a,t.t_ + a21a2

(B.3)
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Themeanof thecombined,globaldistributionis just aweightedaverageof the

individual distributionmeans.Thus min(/.t1,/.t2)< lto _< max(&,/.t2).

The variance can be derived from the second central moment:

= _[ (x - Ve[xl)2[a,f,(x)+ a2L(x)lax

= f2 ( x2 -- 2Xl'_G °1- ]'12G) [alfl(x) "_ a2L(x)]dx

= a, Ex2f(x)dx + aaEx=f2(x)dx -

2,uGa, f xf(xOdx - 2kecazI2xfz(x)dx +

2

,of2 [a,f(x) + azf2(x)]dx

2

= alE_[x 2] + a2E2[x 2] - 2#_azE_[x I - 21.t_aaEE[X 1 + p_(1)

= a_E,[xq + a_G[x 2] - 2laa(a,E,[x] + a=G[xl) + _(1)

= _El[x z] + a2E2[x z] - 2/.ta(a2, , + a2.u:)+ /.t_(1)

= a,E_[x 2] + a2Ez[x 2] - 2/.t_(/.t_)+ /t_(1)

= a,(cr? + V 2) + a2(o" _ + #2)_ /.t_

= (a, cr? + a2cr22) + (al&' + az/.t22) - ,u_

03.4)

The term in the left-most parenthesis is just the weighted average of the individual

variances. It can be shown that the other terms in the equation must be greater than or

equal to 0 so that the overall result will be larger than the weighted average of the

variances. The proof is through the use of the Lagrange multiplier method with the

constraint of Equation B.2. The idea is to show that (ajl.t_ + a.e#2z) - #2 > 0 by

proving the minimum value cannot be negative. Thus, find the minimum of:

A = (a.a/.tlz + aa/-tzz) - /.t_ 03.5)
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with theconstraintof a 1 + a z = 1.

L = A + it(a I + a 2 - 1)

: (alp _ + a2/.t_)- kt_ + it(a, + a 2 -1)

=(a,.,_+a2._)-(a,.,+a_/'2;+_(a,+a_-i)

= (a,/a_+ az/.t_)-(a_#_ + 2a,a2,,_u2 + a_/.t:)+it(a,+ a2 -1)

= (aI - a_)l.t_+ (a2 - aZ)/.t_- 2a,az/.t,1.tz + it(aI + a2 - I)

(B.6)

Now minimize L:

0L = 0 = (1- 2al)# 2 - 2ad.td.t 2 + it
&

(B .7)

0L

0a 2

- 0 = (I- 2a2)/.t_ - 2al]./l]./2+ it (B.S)

3L
- 0 = a I + a 2 -- l (B.9)

Solving Equations B.7 - B.9 results in the following:

/'1. = &_2 03.10)

1
a 1 _

2
03.11)

1
a2 = w

2
(B.12)
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Aiilirl = (a 1 - a 2)t2 2 + (a z - a_)la_ - 2ala21211*z

= (1- (I)2)jUI2 n t_ (1- (1)2)F_2 __ 2(1)(1)_._1]./2

= (} - + (} - }),q -

- '('e + z _ 2/_,kLz)- X FL2

__0

(B.13)

2 is thus to increase theThe contribution of A to the new, combined variance, _,

spread of the distribution due to the separation of the individual distribution means, #_

and /.tz.

B.2 Statistics of Combining More Than 2 Distributions

The statistical parameters of combining more than 2 distributions can be obtained

in a similar manner as in the previous section. For example, the probability density

function, f(x), for sampling from 3 distributions is:

f(x) = all(x) + a2f2(x) + a3f3(x) 03.14)

a_ + a2 + a 3 = 1 03.15)

And the mean and variance can be computed as follows:

,u_ = E[x]

= I_ xf(x)dx

: I2 x[aqf(x) + a2f2(x) + a3f3(x)}tx

= a,I 2 xf(x)dx + azl 2 xf2(x)dx + a3I 2 xf3(x)dx

= al# l + a2# 2 + a3]A 3

03.16)
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< =El(x-ELx ;]
= I2 (x - E[x])2Ia, f(x) + a2f2(x) + a3f3(x)ldx

= I_ ( x=- 2xpa + p_)[a_f(x)+ aEfz(X)+ a3f3(x)]dx

= alEX2f(x)dx{- azExZf2(x)dx+ a3Ex2f3(x)dx -

2p_a, I2xf(x)dx- 2!a_azf)f2(x)dx- 2p_a312xf3(x)dx +

--a,_,[:l+a2_[x2]+a,_[x2]
2paa2E_[x I - 21a_a2EE[X]- 2#_a3E3[x ] + #2(1)

--_,[x2]+a2_2[;]+_,E,[x2]
2

2_(a_E_[x] + a_E_[x] + a3E3[x] ) + pa(1)

=a,U,[x2]+a2_[x2]+a,_[x2]
2

2/_(azp I + aaP: + a3,u3) + /.L_(1)

= alEI[X2]--I-a2E2[x2] + a3E3[x2]- 2/.ta(pc)+ /.t_2(1)

= <(_,_+ .,2)+ a_(o_+ ,,_)+ a,(-,_+ ,_)- ,_
2 a30"32)+ (al_l2+ a2/.t2 + a3/.t3)-/.t_

(B.17)

Again, the left-most terms in parenthesis are just the weighted average of the individual

distribution variances; while the remaining terms are due to the difference in the means of

the distributions and increase the overall variance of the combined probability density

function.
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Appendix C

Conflict Detection Using Line-Volume Intersection

The determination of conflict between 2 moving objects is relatively simple if the

path of the objects can be approximated as straight line segments. When placed in the

relative frame of one of the objects, the solution becomes one of calculating the

intersection of a line (relative velocity vector) with a protected volume surrounding the

origin. If an intersection occurs, then minimum separation is violated.

C.1 Relative Frame

Working in the relative frame of one of the aircraft can greatly simplify the

computational complexity of the conflict determination problem. For this discussion, the

aircraft at the origin will be termed the ownship, and the problem is to determine if the

other aircraft (intruder) will pass through the protected volume surrounding the origin

position.

Figure C-1 a shows the encounter in absolute frame with individual trajectories

depicted as straight line segments. A key change in the velocity vector constitutes a new

segment. For Figure C-lb, the situation is shown in the relative frame of the ownship

aircraft. Each change point is thus a change the relative velocity vector between the two

aircraft. The task is then to determine if any of the line segments intersect the protected

volume at the origin. If there is an intersection, the protected volume will be violated and

a conflict is declared.
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Figure C-l: Absolute vs. Relative Frame
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C.2 Line-Volume Intersection

The solution to solving the intersection between a line (relative velocity vector)

and a cylinder (protected volume) can be split up into horizontal and vertical dimensions.

The idea is to determine first if there is an intersection in the horizontal plane. If there is,

then the line connecting the 2 points of horizontal intersection is cross-checked in the

vertical domain to see if it lies within or passes through the cylinder.

For the discussion in this appendix, DMOD will refer to the horizontal radius of

the protected zone and ZMOD will denote the minimum vertical separation (see Figure

C-2).

DMOD 3

I

Figure C-2: Cylindrical Protected Zone Parameters

C.2.1 Horizontal Intersection

Let (d x, dy, d z) be the starting position of a line segment which begins at time

to and ends at t e. The direction of the line can just the relative velocity vector

[v = v_ v r v_ . Any other point, p, on the line can be found from:

p : (d x + Vx(t- to), dy + vy(t-to), d_ + v_(t-to) ) (C.1)

In the horizontal plane, the time when the line intersects DMOD can be found from the

equation of a circle:
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(< + vx(t - to)) 2 + (dy + vy(t- to)) 2 = DMOD z (C.2)

(v_ + v2)(t - to)2 + 2(v.d. + v,,dy)(t- to)+ (d 2 + d_ - DMOD 2) = 0 (C.3)

which has the form of quadratic equation:

a(,-,o) + ,o)+c = 0 (c.4)

-b + _b 2 - 4ac
(t - to) = (C.5)

2a

Note that is the solution assumes an infinite line.

There are 3 possible solutions depending on the value of the radicand, b 2 - 4ac.

If b z - 4ac < 0, then no real solution exists and the line will never intersect the circle.

If b z - 4ac = 0, then only one solution exists and the line intersects tangent to the

circle of radius DMOD. If b 2 - 4ac > 0, then two solutions exist as the line passing

through the circle.

C.2.2 Vertical Intersection

C.2.2.1 b 2 - 4ac < 0

A conflict does not exist so no there is no need to check the vertical intersection.

C.2.2.2 b _ - 4ac = 0

The line intersects tangent to the circle edge. Thus, if a conflict exists, the

intersection point must lie within ZMOD in the vertical dimension. Using the solution

from Equation C.5, the position of the intersection point can be found from Equation C. 1.

The z-component must be checked to see if it lies within _+ZMOD. If it does, then one
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final check needs to be made to make sure to < t < t,, If this is satisfied, then a conflict

exists along this line segment.

C.2.2.3 b 2 - 4ac > 0

In this case, the line intersects the circle at 2 distinct points, p_ and P2, at times, t_

and t2, respectively. It will be assumed that t_ < t 2. The following set of C code can be

used to determine if the vertical domain intersection is also satisfied:

#define AND &&

#define OR I I

#define MAX(a,b)

#define MIN(a,b)

#define HIT 1

#define MISS 0

#define ZMOD i000.0

(((a) > (b)) ? (a) : (b))

(((a) < (b)) ? (a) : (b))

/* (ft) vertical threshold */

short conflict;

double tO;

double te;

double tl;

double t2;

double vz;

double dz;

double zl;

double z2;

/* 0=miss, l=hit */

/* (sec) start of line segment */

/* (sec) end of line segment te>t0 */

/* (sec) Ist pt. of DMOD hit */

/* (sec) 2 nd pt. of DMOD hit t2>tl */

/* (fps) vertical velocity comp.

/* (ft)

/* (ft)

/*

/* (ft)

/*

*/

start of line segment */

i st pt. of DMOD hit or */

start of line segment */

2na pt. of DMOD hit or */

end of line segment */

if ((t2 < 0.0) OR (t < tl))

conflict = MISS;

else {

zl = vz*(MAX(t0, tl) - tO) + dz;

z2 = vz*(MIN(te, t2) - tO) + dz;

if ((zl <= ZMOD) AND (z2 >= -ZMOD))

conflict = HIT;

else if ((zl > ZMOD) AND (z2 <= ZMOD))
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conflict : HIT;

else if ((zl < -ZMOD)

conflict : HIT;

else

conflict = MISS;

and (z2 >: -ZMOD))

The first if-statement checks to see if the intersection occurs outside of the two

endpoints of the line segment. If it does, then no conflict will exist within the time to to

t e •

The first nested if-statement covers an intruder aircraft that is either currently

within the ownship's protected volume (Figure C-3a) or enters it from the side (Figure C-

3b). The next if-statement handles an intruder coming from above the protected zone

(Figure C-3c), while the last if-statement takes into account the intruder entering from

below (Figure C-3d).
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a) Intruder Inside Protected Zone

b) Intruder Entering from Side

%%%%

c) Intruder Entering from Top

d) Intruder Entering from Bottom

Figure C-3: Vertical Conflict Dimension
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